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Abstract
In this paper, we propose a rigorous transfer matrix formalism to analyze periodic multilayers in some
high-frequency homogenization regime. We derive explicit expressions for transfer matrix when the
wavelength is comparable to the size of the periodic cell. We numerically validate our approach by
comparing the dispersion law and transmission spectrum (fresnel coefficients) of a stack alternating
two dielectric layers against that of an effective bi-anisotropic medium.

1. Introduction

In the last decade, there has been a surge of interest in homogenization of the metamaterials [1, 2],
which are artificial materials engineered (i.e.periodic structures) to have desired properties that cannot
be found in nature, such as an effective refractive index below unity, or even negative [3, 4]. The classical
analytic homogenization theories aim to assign electromagnetic parameters to those artificial materials,
but they are typically valid under the limitations that the periodic of the cell at sub-wavelength scales. The
extension of classical homogenization theory to high frequencies is of pressing importance for physicists
working in the field of photonic crystals, but applied mathematicians also show a keen interest in this
topic [5]. In this paper, we show that one can approximate a periodic multilayers by an effective bi-
anisotropic medium up to the optical band, using the high-order homogenization [6].

2. Method

A periodic multilayers and its effective bi-anisotropic medium are illustrated in Fig.1. The multilayers is
made of n identical unit cells consisting of two layers, both of which are non-magnetic. Let h = h1+h2
be the thickness of a unit cell, the layers labelled by m = 2p + 1 (p is an integer) have thickness h1
(f1 = h1/h) and permittivity ε1, while the layers labelled by m = 2p have thickness h2 (f2 = h2/h)
and permittivity ε2. In [6], we have derived the characteristic matrix and denoted it by ω̂Mm. For each
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Fig. 1: (a) Schematic diagram of a periodic multilayers. (b) Effective bi-anisotropic medium

layer, the transfer matrix can be written accordingly as:

Tm = exp[ω̂Mm] (1)
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with ω̂ = ωh/(2πc) the normalized frequency, which is a small parameter. The transfer matrix for a unit
cell is:

T = exp[ω̂M2] exp[ω̂M1] (2)

The key point of our homogenization algorithm is to derive the expressions of the matrix T (= exp[ω̂Meff ]),
when an effective bi-anisotropic medium is defined to approximate the periodic multilayered stack. To
carry out the asymptotic analysis, we use the Baker-Campbell-Hausdorff formula (BCH, [7]):

exp
[
A
]
exp

[
B
]
= exp

[
A+B + JA,BK + JA−B, JA,BKK/3 + · · ·

]
(3)

where the matrix A + B is defined as the first order approximation (classical homogenization), the
commutator of A and B (JA,BK = (AB−BA)/2) is the second order approximation, JA−B, JA,BKK/3
is the third order approximation, and so forth.

Altogether, the transfer matrix T can be written as:

T (ω̂) = I + ω̂T (1) + ω̂2T (2) + ω̂3T (3) + · · · (4)

3. Results

Using the asymptotic algorithm described in the previous section, we find that the effective bi-anisotropic
medium which we mentioned in the introduction is described by the following effective permittivity,
permeability and chirality matrices:

εeff =

 εp 0 0
0 εs 0
0 0 ε⊥

 , µeff =

 µs 0 0
0 µp 0
0 0 µ⊥

 , ξeff =

 0 ξp 0
ξs 0 0
0 0 0

 (5)

where the 8 components with subscripts represent the effective parameters in s and p polarization. From
(3), the characteristic matrix Meff for the effective medium can be derived. The entries (e.g. 8 compo-
nents for an oblique incidence) in the effective tensors can also be identified [6].

For the sake of illustration, let us consider the simple case of a normal incident wave in s-polarization.
We take up to eighth order approximation in BCH (3) and derive the approximate transfer matrix T with
corrective terms ω̂T (m) with m ranging from 1 to 8, and leading order term T (0) = I . It is enlightening
to look at the dispersion law, which, from (4), is related to the trace of T in the following way:

cos(kzh) =
1

2
tr(T ) = 1− ω̂2

2
(ε1f1 + ε2f2)−

ω̂4

24
f2
1 f

2
2 (ε1 − ε2)

2 +
ω̂4

24
(ε1f1 + ε2f2)

2 + · · · (6)

with kz the wavenumber along z-direction. As is known to us, when |tr(T )/2| ≥ 1, a stop-band is
present [8]. Fig. 2(a) shows the dispersion law of a typical effective bi-anisotropic medium at different
orders of approximations against that of a classical periodic multilayered stack. Here we suppose the two
dielectric layers are respectively Glass (ε1 = 2, f1 = 0.8), and Silicon (ε2 = 12, f2 = 0.2).

In Fig. 2(a), comparing with the dispersion law of the multilayered stack (the solid line), we can clearly
see that the second, fourth order approximations are just efficient in a range of low frequency, while at
the sixth order, the dispersion curves are nearly superimposed up to the edge of the first stop band (with
an error of 1% exemplified in the close up view, see inset of Fig. 2(a)), so well beyond the range of
validity of classical homogenization [9]. Adding the next even order (i.e. eighth order, the thin solid
line), changes the curvature and gives a sharper estimate in the stop band region (a full superimposition
as seen in inset), although its intersection with the horizontal axis defines an approximate position for
the upper edge of the stop band. This can be improved by taking higher orders of approximation.

In order to check the validity of our homogenization approach, we also plot the transmission coefficient
of the homogenized bi-anisotropic medium (dotted line in Fig. 2(b)) with formula:

t =
2kz0/ωµ0

(kz0/ωµ0)(T11 + T22) + i(T21 − (kz0/ωµ0)2T12)
(7)
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Fig. 2: (a) Dispersion curves for the periodic multilayers (thick solid line) and the effective bi-anisotropic
medium in different orders approximation for a normal incidence. Note that p and s polarizations share
the same curves; (b) Transmission spectrum for both the multilayered stack (solid line) and the effective
bi-anisotropic medium in eighth order approximation (dotted line).

where kz0 is the wavenumber in vacuum, and and similarly the formula can be retrievable for an incident
wave in p-polarization. It is noted that T11 (T22), T12 and T21 are related to the effective parameters
like ξeff , µeff and εeff in the bi-anisotropic medium. And we compare this coefficient against that of the
periodic structure (solid line in Fig. 2(b)). We note that the transmission vanishes in the same range of
frequencies, up to a slight inaccuracy, which can be reduced by taking higher order asymptotic in (4).

4. Conclusion

In conclusion, we have demonstrated by numerical calculation that an effective bi-anisotropic medium
shares the same transmission spectrum as a one-dimensional periodic dielectric structure, when the size
of the periodic cell is on the same order as the wavelength. Although we just discussed the case when
the incident wave is normal to the stack, we would like to stress that our homogenization algorithm is
applicable when there is an oblique incident wave, and also at higher orders of approximation, in which
case additional stop bands would be also retrieved from the analysis. Finally, the present analysis can
be extended to the layered structures of which the individual layers are inhomogeneous in the transverse
plane(two-dimensional periodic structures), even three-dimensional periodic structures.
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