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Abstract
By using the reductive perturbation method, we found that the two Beltrami components of the
electromagnetic field propagating along a fixed direction in an isotropic nonlinear chiral metamaterial
obey a system of two coupled nonlinear Schrödinger (NLS) equations. Certain spectral regimes exist
wherein one of the two Beltrami components exhibits a negative-real refractive index and the NLS
system can be approximated by the Manakov system. Bright-bright, dark-dark and dark-bright vector
solitons can form in those spectral regimes.

1. Introduction

Metamaterials exhibiting negative-real refractive index (NRRI) have been a topic of intense research
activity [1]. A sufficient condition for a linear isotropic material to exhibit an NRRI is that its permittivity
and permeability have negative real parts in the same frequency interval [2]. That condition can be
relaxed if the material possesses chirality and, therefore, exhibits circular birefringence; then, one of
the two refractive indices can have a negative real part [3]. This possibility of linear isotropic chiral
NRRI materials gave fresh impetus to chirality research [4]-[5]. On the other hand, nonlinear isotropic
achiral NRRI materials [6] may feature nonlinearity-induced localization of electromagnetic (EM) waves
and soliton formation [7]. The possible incorporation of nonlinearity in isotropic chiral NRRI materials
motivated us to investigate soliton formation in these materials.

We studied the propagation of an EM field along a fixed direction in an isotropic chiral NRRI material
with nonlinear permittivity and permeability of the Kerr type. We started from the time-domain Maxwell
equations and used the reductive perturbation method (RPM) to derive a system of two coupled nonlinear
Schrödinger (NLS) equations for the left-handed and right-handed Beltrami components of the EM field.
Then, we adopted the Lorentz model for the linear parts of the permittivity and permeability and the
Condon model for the chirality parameter [8]. For sufficiently large chirality parameter in a certain
spectral regime, the refractive index for the left/right-handed Beltrami component is real and negative
while that for the right/left-handed Beltrami component is real and positive; moreover, the system of
the NLS equations can be approximated by the completely integrable Manakov system [9]. Hence, the
nonlinear isotropic chiral NRRI material can support various classes of exact vector soliton solutions:
bright-bright solitons as well as dark-dark and dark-bright solitons. In all cases, these vector solitons are
composed of a Beltrami component with negative- and another with positive-real refractive index.
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2. Coupled nonlinear Schrödinger equations

We considered an isotropic chiral material obeying the Tellegen constitutive relations [10], and possess-
ing the following permittivity and the permeability functions (in the frequency domain):

ε̃(ω) = ε̃R(ω) + iε̃I(ω) + α1|E|2 + β1|H|2, µ̃(ω) = µ̃R(ω) + iµ̃I(ω) + α2|E|2 + β2|H|2. (1)

For both functions the nonlinear parts are characterized by a Kerr nonlinearity, with α1,2 and β1,2 the
Kerr coefficients. The chirality parameter is purely linear and is defined as κ̃(ω) = κ̃R(ω) + iκ̃I(ω).
We assumed next that the EM field is propagating along the +z axis with a carrier frequency ωc. Then,
the Bohren decomposition into left- (+) and right- (−) handed Beltrami components implies [10]:

E(z, t) =
[
ê+q+(z, t)eik+

c z + ê−q−(z, t)eik−c z
]
e−iωct + c.c., (2)

H(z, t) =
[
ê+p+(z, t)eik+

c z + ê−p−(z, t)eik−c z
]
e−iωct + c.c., (3)

where “c.c.” denotes the complex conjugate, k±c = k̃±(ωc), ê± = (x̂±iŷ)/
√

2, while the field envelopes
q± and p± have to be determined; also k

±(1)
c = dk̃±(ω)/dω|ω=ωc and k

±(2)
c = d2k̃±(ω)/dω2|ω=ωc ,

where k̃±(ω) and ñ±(ω) are the complex wave numbers and refractive indices, respectively.

Nonlinear evolution equations for the field envelopes were found by the reductive perturbation method,
as described in [11]. First, we introduced the slow variables Z = ε2z and T± = ε(t − k

±(1)
c z), and

then expanded q± and p± in terms of the formal small parameter ε. Next, we substituted the latter into
the Maxwell equations, and expanded the linear parts of ε̃(ω), µ̃(ω), and κ̃(ω) about ωc. Assuming that
α1,2, β1,2, ε̃I , µ̃I , κ̃I are of O(ε2), we obtained at O(ε2) the coupled (dimensionless) NLS equations:

i∂Zφ+ − s
2∂2

T φ+ + σ
(|φ+|2 + |φ−|2) φ+ = −iΓ+φ+, (4)

i (∂Zφ− − δ ∂T φ−)− d
2∂2

T φ− + σ
(|φ+|2 + |φ−|2) φ− = −iΓ−φ−, (5)

where the independent variables are T = (t−k
+(1)
c z)/t0 and Z/L+ (L+ = t20/|k+(2)

c |, t0 a characteristic
time, and c the speed of light in free space), while the constant parameters in Eqs. (4)-(5) read:

δ = t0
k

+(1)
c − k

−(1)
c

|k+(2)
c |

, d =
k
−(2)
c

|k+(2)
c |

, s =
k

+(2)
c

|k+(2)
c |

, σ = γ/|γ|, Γ± = L+Γ̃±, (6)

γ =
ωc

2
[ε0(α1Z̃` + β1Z̃

−1
` ) + µ0(α2Z̃` + β2Z̃

−3
` )], Γ̃± = ωc

(
ε̃I µ̃R + ε̃Rµ̃I

2
√

ε̃Rµ̃R
± κ̃I

c

)
. (7)

In the most general case (δ 6= 0, d 6= ±1 and Γ± 6= 0), the system of Eqs. (4) and (5) is not integrable.
However, for certain parameter values, one can find various types of vector solitons [12]. Provided δ = 0,
d = s and Γ± = 0, Eqs. (4) and (5) reduce to the completely integrable Manakov system [9]:

i∂Zu− s

2
∂2

Tu + σ|u|2u = 0, (8)

where u(Z, T ) = [φ+(Z, T ), φ−(Z, T )]T .

3. Vector solitons

We found that it is possible to obtain physically relevant conditions allowing us to approximate the
general system of the NLS Eqs. (4) and (5) to the Manakov system (8). We considered a certain type
of isotropic chiral material with single-resonance Lorentz models for the linear parts of the relative
permittivity and permeability, and to the Condon model for the chirality [8]:

ε̃`(ω) = 1− ω2
p

ω2 − ω2
ε + 2iδεω

, µ̃`(ω) = 1− ω2
m

ω2 − ω2
µ + 2iδµω

, κ̃(ω) =
acZ−1

0 ω

ω2 − ω2
κ + 2iδκω

, (9)
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where Z0 =
√

µ0/ε0, {ωε, δε}, {ωµ, δµ}, and {ωκ, δκ} are the resonance frequencies and linewidths of
ε̃`, µ̃`, and κ̃, respectively; while a is the rotatory strength of the resonance.

For ωp = 0.9ωε, ωm = 0.8ωε, ωµ = 0.7ωε, ωκ = 0.5ωε, δε = δµ = δκ = 2× 10−3ωε, and a = 0.5ωε/c,
there exists a certain spectral “Manakov” regime such that Re(ñ−) < 0, Re(ñ+) > 0, d ≈ s, while
δ ≈ 0 and Γ± ≈ 0; see Fig. 1. Thus, Eqs. (4) and (5) are well approximated by the Manakov system (8).
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Fig. 1: (a) Re(ñ−) and Re(ñ+) in the Manakov regime (1.35ωε, 1.45ωε), (b) s and d of the NLS Eqs. (4)-
(5), (c) Γ+ and Γ− in the same regime. Inset shows the coefficient δ.

For s = d = −1, we considered σ = ±1 where the effective Kerr nonlinearity in the Manakov system
is self-focusing and self-defocusing, respectively. For σ = +1 there exist exact bright-bright soliton
solutions, i.e., both Beltrami components take the form of bright solitons. For σ = −1 there exist both
dark-dark solitons (both Beltrami components take the form of dark solitons) and dark-bright ones (one
Beltrami component is a dark and the other a bright soliton). The form of these solitons is given in [11].

4. Conclusions

We studied pulse propagation in an isotropic chiral NRRI material with Kerr nonlinearity and found that
it exhibits a NRRI for the right/left-handed Beltrami component in a certain spectral regime whereas the
left/right-handed Beltrami component does not. In that regime, the NLS system may be approximated
well by the Manakov system supporting bright-bright, dark-dark or dark-bright vector solitons solutions.
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