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Abstract

This paper proposes a systematic method for deriving equivalent circuit models of metamaterials.
The equivalent circuit model is efficient to analyze the electromagnetic phenomena in metamaterials
and to design them. The target metamaterials we discuss are composed of conducting spheres and
wires. Based on the electric field integral equations of Maxwell equations, we derive a lumped
constant equivalent circuit model by Galerkin method. The proposed model expresses spheres with a
capacitance matrix and wires with an inductance matrix. It clarifies the electromagnetic phenomena
in metamaterials such as their resonant modes and their frequencies.

1. Introduction

The modeling of electromagnetic phenomena in metamaterials is very important for analysis and design
of them. Equivalent electric circuits of metamaterials have been an efficient model to grasp the electro-
magnetic phenomena in meta-atoms such as split-ring resonators. In those cases, LC resonant circuits
are derived by intuitive way. However, in order to model more complicated structures such as the spatial
coupling among the meta-atoms, more systematic approach is required.

This paper proposes an equivalent circuit model of metamaterials which are composed of conducting
spheres connected by wires [1]. The proposed model is based on a partial equivalent electric circuit [2],
and enables to model the spatial coupling among conductors from Maxwell equations. Using this model,
we can analyze systematically the resonant modes and their frequencies of the metamaterials.

2. Equivalent circuit model with spatial coupling

An example of a conductor system composed of conducting spheres and wires is shown in Fig.1(a).
Cubic unit cells, whose size areD and smaller than the wavelengthλ, are arrayed regularly in vacuum,
and conducting spheres connected by wires are at the arbitrary vertex of the unit cells. The number of
spheres and wires areM andN , respectively. As shown in Fig.1(b), the radiusa of the wire is much
smaller than the lengthl and the radiusb of the spheres, and the radiusb is much smaller than the length
D. In order to obtain an equivalent circuit with spatial coupling of the structure, we start from Maxwell
equations in Lorentz gauge. Assuming that the spheres and wires are perfect conductor, we describe the
electric field in the conductors by

µ0
∂

∂t

∫ ∫
G(r, t, r′, t′)J(r′, t′)d3r′dt′ +

1

ε0
∇
∫ ∫

G(r, t, r′, t′)ρ(r′, t′)d3r′dt′ = EE(r, t), (1)

whereJ , ρ andEE are induced current density, charge density, and external incident field, respectively.
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Fig. 1: (a) An example of 3-dimensional structure of conducting spheres connected by wires. Parameter
D is the size of the cubic unit cells. (b) Parametera is the radius andl is the length of the wire.b is the
radius of the spheres. CurrentI and chargesQ are on the surface of the wire and spheres, respectively.

G is the Green function given by

G(r, t, r′, t′) ≡ δ(t− t′ − |r − r′|/c)
4π|r − r′|

. (2)

Usingthe equation (1) and the conservation of charge

∇ · J +
∂

∂t
ρ = 0, (3)

we derive the equivalent circuit equation.

Now, assuming thatJ andρ are uniformly distributed only on the surfaces of the wires and spheres,
respectively as Fig.1(b), we represent those as

J(r, t) =
N∑

n=1

In(t)Ψn(r), ρ(r, t) =
M∑

m=1

Qm(t)Φm(r), (4)

whereΨn(r) andΦm(r) are normalized basis functions. Replacing the spheres and wires by nodes
and edges of the corresponding equivalent circuit, we assume the following relation of normalized basis
functions

∇ ·Ψn =
M∑

m=1

UmnΦm, (5)

whereUmn is the incidence matrix which express connections of the circuit. Applying the Galerkin
method to the equations (1) and (3), besides neglecting the retardation because ofD ≪ λ, we obtain the
equivalent circuit equations based on a current vectorI and a charge vectorQ by

L
d

dt
I −UTPQ = −V E , UI +

d

dt
Q = 0, (6)

whereL is the inductance matrix,P is the potential matrix which is defined by the capacitance matrix
C asP ≡ C−1, andV E is the external source vector. Furthermore, combining the equations (6), we
obtain a second order differential equation

L
d2

dt2
I +UTPUI = − d

dt
V E . (7)

3. Resonant mode and frequency analysis

First, we confirm the method by a simple example shown in Fig.2(a). In order to analyze the resonant
modes and frequencies of the structure, we solve the eigenvalue problem of the equation (7). Because
L−1UTPU is a 2× 2 matrix, two modes exist, i.e., one is a common mode with its resonant frequency
8.10 GHz and the other is a differential mode with its resonant frequency 8.17 GHz. In order to confirm
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Fig.2: (a) Four spheres connected by two wires. (b) Current density by the electromagnetic field analysis.

the results, we analyze the current density of the structure using the full-wave electromagnetic field
simulation with finite integration technique. Fig.2(b) shows that the current flows only on the surface of
the wires and our approximation is valid. The resonant frequencies of each mode are 8.10 GHz and 7.90
GHz, respectively. The errors of each mode between the model and the electromagnetic field analysis
are 0.0% and 2.5%.

Second, we confirm the method with a more complicated structure shown in Fig.3(a). The size of con-
ductors are the same in Fig.2(a). The result of current density by the electromagnetic field analysis is
shown in Fig.3(b). After enough time has passed, only one mode in Fig.3(a) which is the lowest resonant
frequency 3.12 GHz exists in the conductors. The resonant frequency of the mode by our model is 3.08
GHz and the error is 1.3%. Thus, our model gives a good approximation of the resonant frequency.

(a) (b)

Fig.3: (a) Twelve spheres connected by ten wires. Arrows show the mode after enough time. (b) Current
density by the electromagnetic field analysis.

4. Conclusion

We considered the structure composed of conducting spheres connected by wires, and proposed the
systematic method for deriving the equivalent circuit model including the spatial coupling among meta-
atoms. Comparing the resonant frequencies by the proposed model with the results of the electromagnetic
field analysis, we confirm the validity of the model. The proposed model can be applied to 3-dimensional
structures, and enable us to explain various electromagnetic phenomena in metamaterials.
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