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Abstract

Ideal transformation optics cloaking at positive frequency, besides rendering the cloaked region
invisible to detection by scattering of incident waves, also shields the region from those same waves.
In contrast, we demonstrate that approximate cloaking permits a strong coupling between the cloaked
and uncloaked regions; careful choice of parameters allows this coupling to be amplified, leading to
effective cloaks with degraded shielding. The sensor modes we describe are close to but distinct from
interior resonances, which destroy cloaking. As one application, the sensor mode of a cloak makes it
possible to use transformation optics to hide sensors in the cloaked region and yet enable the sensors
to efficiently measure waves incident on the exterior of the cloak, an effect similar to the plasmon
based approach of Alù and Engheta [3]. We discuss this in 2D, having treated the 3D case in [9].

1. Introduction

Transformation optics has led to designs for devices having radical effects on wave propagation, one
of the most compelling of which is cloaking [1, 2]. The complex material parameters of a transforma-
tion optics cloak steer the rays around the region to be hidden, and to a large extent the behavior of the
waves mimics that of the rays. The early studies on such cloaks leaves the impression that transforma-
tion optics cloaking produces a decoupling of the waves within and external to the cloaked region, cf.
[3, 4, 5, 6, 7, 8]. Later, it has been observed that the cloaked region in fact has a coupling with the
environment surrounding the cloak, and this may be amplified by means of carefully chosen parameters
within the cloaked region [9]. There is thus a fundamental difference between cloaking for rays and
cloaking for waves. We emphasize that the cloaking effectiveness can be made arbitrarily close to the
ideal cloak, while keeping the magnitude of the coupling fixed. Although we focus on scalar equations
in the quasistatic and finite frequency regimes, modeling electrostatic [10] and acoustic cloaks [11], the
same phenomenon holds with regard to transformation optics cloaking for transversely polarized elec-
tromagnetic waves, e.g., in the cylindrical geometry [12].

Here, we consider waves modeled by the Helmholtz equation∇·σ(x)∇u(x) + κ(x)ω2u(x) = 0 in two
and three dimensions. In electrostatics,ω = 0 andσ denotes the conductivity; in acoustics,ω > 0 is the
frequency, andσ andκ correspond to the inverse of the anisotropic mass density and the inverse the of
bulk modulus, resp.

At nonzero frequencies, ideal cloaking [2] is accompanied by perfectshielding, meaning that an observer
or device within the cloaked region cannot detect any information about the incident wave [12]. Further-
more, approximate cloaking is also accompanied by approximate shielding [5, 13] except near certain
exceptional frequencies at which the interior of the cloak is resonating. In the 3-dimensional case the
resonance frequencies of the approximate cloaks tend to the Neumann eigenvalues of the interior when
the approximation becomes better [13]. However, in the 2-dimensional case the resonance frequencies
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of approximate cloaks tend to the eigenvalues correspondingto a non-local boundary condition [16]. In
both the 2 and 3 dimensional case both the cloaking and shielding effects are destroyed at the resonance
frequencies. In this paper we consider the sensor effect that when the parameters of an object inside the
cloak are chosen carefully so that the cloaking effect appear but on the other hand the waves propagate
inside the cloaked region and are coupled with the wave outside the cloak, see Fig. 1. We have previously
studied the 3D case in [9]; here, we consider the situation in 2D. This transformation optics based effect
is similar to the cloaked sensor effect studied by Alù and Engheta for plasmonic cloaks [3].

2. Mathematical analysis of the tuned approximative cloaks

Coordinate transformations - Let us recall the construction of approximations to ideal cloaks.

Fig. 1: Plane wave incident to the
cloaked sensor for frequencyω = 2
(top) andω = 16 (bottom) in 3D case.

Let Br = {x ∈ R
2; |x| < r} denote a disc of radiusr > 0

andSr = ∂Br be its boundary. Let1 ≤ R < 2 be a parameter,
and setρ = 2(R − 1), 0 ≤ ρ < 2. ThenR ց 1 asρ ց 0. Let
Fρ : B3 −Bρ → B3 −BR be the coordinate transformation

x := Fρ(y) =

{
y, for 2 < |y| < 3,(

1 + |y|
2

)
y

|y|
, for ρ < |y| ≤ 2.

(1)

For ρ = 0, the mapF = F0 is the singular transformation of
[10, 2], leading to the ideal transformation optics cloak, while
for ρ > 0, Fρ is nonsingular and leads to a class of approximate
cloaks [5, 13, 15]. Letσ0 = δjk denote the homogeneous,
isotropic tensor and define for then forρ > 0 the approximate
cloak tensorσρ onB3 as

σjk
ρ (x) =

{
δjk, for |x| < R or 2 < |x| < 3,

σjk(x), for R < |y| ≤ 2.

Here, σ(x) = (DF (y))σ0(y) (DF (y))t/det(DF (y)), y =
F−1(x) is the standard cloaking tensor. Define also

κρ(x) =

{
1, for |x| < R or 2 < |x| < 3,

det(DFρ(F
−1
ρ (x)))1/2, for R < |x| ≤ 2.

Now place inside the cloak a scattererBR0
of radiusR0 < 1,

with a surface whose impedance induces a real Robin boundary condition onSR0
. Thus, we consider in

the domainΩ = B3 −BR0
the solutions of the boundary value problem,

(∇·σρ∇+ ω2κρ)uρ = 0 in Ω, uρ|S3
= f, (∂r + α)uρ|SR0

= 0, (2)

for an impedanceλ = −iα to be specified later. In the domain2 < |x| < 3 we can representuρ in polar
coordinates(r, θ) asuρ(r, θ) =

∑∞
n=−∞ unρ (r)e

inθ. Then equations (2) give rise to a family of boundary
value problems for theunρ . For our purposes, the most important one isu0ρ, i.e., the radial component of
uρ, which is independent ofθ, and we study this next.

Lowest harmonic and the sensor effect - Consider the problem (2) withf = const, so thatuαρ (r, θ) =
uαρ (r). The Helmholtz equation (2) leads then to an ordinary differential equation foru(r) = uαρ (r). We
can then specify the Cauchy data (i.e., the value of the wave and its normal derivative) atr = 3, that
is, fix

(
u(3), du

dr
(3)

)
= (f, g), solve the functionu(r) for R0 ≤ r ≤ 3 using the ordinary differential

equation and compute the value of the parameterα for this solution by settingα = −u′(R0)/u(R0).
In other words, for any valueρ > 0 and for any pair(f, g) we can determineα so that the Helmholtz

equation (2) has a radial solutionu(r) with
(
u(3), du

dr
(3)

)
= (f, g).
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In the case when(f, g) = (0, 1) we say that the corresponding Robin coefficientα = αres(ρ) gives
a value of the impedance which induces a resonant wave,ures. Also, in the case when(f, g) =
(J0(3ω), ωJ

′
0
(3ω) we say that the corresponding Robin coefficientα = αsen(ρ) gives a value of the

impedance which induces the sensor effect and giving rise to the sensor solution,usen. A calculation
shows thatαsen is close toαres: for someb0 6= 0, one hasαres(ρ)− αsen(ρ) = b0ρ+O(ρ2), asρ ց 0.
Thus, the sensor effect is quite sensitive to perturbations. More careful analysis confirms the following
three regimes, depending on how closeα is toαsen(ρ):

(i) Cloaking for generic impedance. If α is bounded away fromαsen i.e., |α − αsen(ρ)| ≥ c > 0,
then the cloak acts as an effective approximate cloak, and the field goes to zero in the cloaked region as
ρ ց 0, so that there is no sensor effect.

(ii) Resonance effect. For the specific valueα = αres(ρ), the interior resonance leads to both the
destruction of cloaking and the absence of shielding, since thenω is an eigenfrequency of the equation
(2) with boundary conditionu = 0 on∂Ω and(∂r + α)u = 0 on r = R0.

(iii) Cloaking with sensor effect. For the valueα = αsen(ρ), the cloak acts as an effective approximate
cloak, but inside the cloaked region the solution is proportional to the value which the field would have
had at the origin in free space, with proportionality of orderO(1) asρ → 0, that is, forR0 < r < R,
uρ(r) = c0(r)v0 +O(ρ), wherec0(r) is a not identically vanishing function andv0 is the value atO of
the solution to the free-space∇·∇v+ω2v = 0, v|r=3 = f. Thus, in the sensor mode the cloak functions
as an “invisible magnifying glass”, where the value which the field would have had in the empty space at
a single point can be measured anywhere inside the cloak. If one places inside the ballB(R0) a device
which measures e.g. the Neumann boundary value of the solution on the boundary∂BR0

, this allows
one to enclose a measurement device which does not affect the incident fields being measured, see [9].
We also note that in the sensor mode the cloaking is actually improved as the scattered field has in the
region|x| > 2 the magnitudeO(ρ) asρ → 0.

Roughly speaking, whenα = αsen(ρ), the frequencyω is so close to the eigenfrequency of the inside
of the cloak that the energy flux from the inside to outside and from the outside to inside through the
surfacer = R are balanced. The solution inside the cloak does not blow up and the energy flux from the
inside cancels the scattering caused by the fact that the cloak is only an approximate cloak, not a perfect
cloak.
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