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Abstract

In this paper the focus is in the generation of dielectric losses from lossless or extremely low-loss
component materials by a suitable mixing process. In ordinary mixing, the macroscopic continuum
“inherits” the properties of its constituents. Here we show by several examples, that it is possible to
break this rule. The dissipative character of dielectric materials can be drastically changed by mixing.

1 Introduction

In metamaterials engineering research, it is not uncommon that the designed structure displays unex-
pected properties. In fact, it is the very objective in metamaterials research to fabricate media that exhibit
emergent characteristics which are not present in the constituent materials [1].

Mixing of materials with different dielectric and/or magnetic properties is a phenomenon where very
small changes in the constitution of the structure may cause strong variation in the macrosopic behavior.
Even in the case where the components of the mixture obey linear constitutive relations, the sensitivity
of the global response on the base properties make the effective response very non-linear with respect to
structural variation. Percolation behavior [2] is an example of such non-linearity.

In this presentation we focus on one potentially emergent property in dielectric homogenization: losses.
Is it possible that the mixing process could give birth to dissipative character mixtures of lossless or
low-loss building blocks?

2 Homogenization principles

Among the numerous mixing formulas in the electromagnetics literature, the Maxwell Garnett [3] and
Bruggeman [4] homogenization principles are perhaps the most commonly used. In the fundamental
form, they deal with a two-component geometry with spherical particles, and lead to formulas from
which the effective permittivity of the mixtureεeff is easily calculated as a function of the component
permittivities and their fractional volumes.

The Maxwell Garnett and Bruggeman predictions for the effective permittivity are different in general.
For mixtures made of components that do not contrast much in their dielectric response, the two predic-
tions forεeff are fairly close to each other. However, for mixtures with strongly different permittivities,
either in their real or imaginary parts, the two formulas start to deviate from each other when the mixing
ratio increases.

In the case of mixtures with random structure, it is natural that there is no single and unique formula for
the effective permittivity. With the same permittivity contrast and fractional volume ratio, two samples
have different permittivities. Indeed, another way to look at basic mixing rules is to treat them as bounds
between which the permittivity of any sample with the same structural parameters has to fall [5].
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However, a much more fundamental difference between the Maxwell Garnett and Bruggeman models ap-
pears when they are applied to plasmonic mixtures. In such mixtures, the ratio between the permittivities
of the two dielectric components is a negative number. In this case the Maxwell Garnett prediction leads
to singularities, in other wordsεeff becomes infinitely large for certain combinations of the permittivity
ratio and volume fraction.

In contrast, Bruggeman formula does not lead to infinities but rather its prediction is acomplex-valued εeff!
This happens even when both component permittivies are real. A non-zero imaginary part in the permit-
tivity entails dissipation, and hence it means that a lossless whole can be built from lossless components.

Both predictions (infinities and imaginary permittivities) are intuitively difficult to accept. However, it
seems that the metamaterials literature is more tolerant to the singularly behaving effective permittivity
than accepting the emergence of losses. Also, numerical results [6] have given confirmation for the
plasmonic Maxwell Garnett prediction of real-valuedεeff which may attain extremely strong amplitudes,
at least in the case of ordered mixtures.

On the other hand, in the positive-permittivity region, the Bruggeman formula is not the optimum one
for regularly latticed structures, but rather it has been shown better suited for amorphous mixtures. In
addition, there are cases where also the Maxwell Garnett approach with lossles components leads to
complexεeff, to be discussed in the next section. Hence it may be reasonable to give a second thought on
the possibility of emergent losses in certain type of metamaterials.

3 Complex responses for real-parameter inclusions

The following examples show the electric response of a lossless structure to become complex-valued.

RU sphere
The electrostatic response of a small particle is contained in its polarizabilityα. In the normalized form,
this quantity, for an isotropic sphere readsα = 3(ε − 1)/(ε + 2) whereε is the relative permittivity of
the sphere. For an anisotropic sphere with a constant Cartesian dyadic permittivityε, the polarizability
also becomes a dyadic quantity:α = 3(ε − I) · (ε + 2I)−1, whereI is the unit dyadic.

Another interesting type of anisotropy in spherical structures is a radial anisotropy. A radially uniaxial
(RU) sphere has two different permittivity components, one in the radialεr, one in tangentialεt directions
with respect to the form of the sphere. The macrosopic response of such a sphere is isotropic and it turns
out [7] that its polarizability is a scalar

α = 3

√
ε2

r + 8εrεt − εr − 2
√

ε2
r + 8εrεt − εr + 4

(1)

Due to the square root in this expression, it is possible that the polarizability becomes complex-valued.
This happens when−8 < εr/εt < 0. The damping character of lossless RU spheres in the context of
Mie scattering has been pointed out in [8]. See also [9, p. 239] for discussion on the branch cut.

Semi-disk
Another example of a complex-valued polarizability in the lossless-permittivity limit has been presented
by Pitkonen [10]: a semi-disk. This is a two-dimensional object which in three dimension corresponds
to a cylinder with semicircular cross section, excited by a transversal field.

The response of a semi-disk with isotropic permittivityε depends on the direction of the exciting field
in the two-dimensional plane, and hence it has to be characterized by two polarizability components.
For negative values of the permittivity of such an object, both of these polarizability components of the
semi-disk become complex-valued in the region−3 < ε < −1/3 [10].

Air bubbles in indefinite material
The Maxwell Garnett model can be generalized for mixtures where the inclusions or the host material
is anisotropic. An example of a mixture where isotropic free-space spherical inclusions occupy a given
volume fraction in uniaxially anisotropic host material has been treated in [11]. A very interesting case is
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when the anisotropy is indefinite, in other words, the two permittivity components have different signs.
Even if these two components are purely real, the effective permittivity attains an imaginary part.

Square lattice
An interesting exact solution for the effective permittivity of a two-dimensional structure has been given
in [12]. There the geometry is such where square-shaped inclusions with relative permittivityε occupy a
volume fraction1/4 of the area in a free-space regular square lattice. The resulting effective permittivity
reads

εeff =

√
1 + 3ε

ε + 3
(2)

It is clear from (2) that for permittivity values−3 < ε < −1/3, the effective permittivityεeff is complex,
in fact pure imaginary. The validity of (2) has been confirmed in [13], among other analysis, by first
taking a small imaginary part intoε and then letting this imaginary part go to zero.

4 Conclusion
It is rather extraordinary that a mixing process should give rise to dissipative response when the building
blocks of the mixture are lossless. Media obeying such behavior can truly be considered to fall into
the class of metamaterials. The above examples, however, showed that mathematically, the effective
permittivity becomes complex-valued for certain choices of real-valued and negative parameters for the
inclusion permittivity or components of anisotropic permittivity. The cases where the polarizability
response of a single particle becomes complex correspond to a similar phenomenon: mixtures with such
scatterers have complex effective permittivity. The lossless treatment is of course an idealization: in
practice, losses are inevitable in the component materials. The conclusion is, nevertheless, that with
extremely small losses to begin with, considerable macroscopic losses can be generated. The relative
increase of the loss factor can therefore, by a clever mixing process, be designed to be arbitrarily large.
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