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Abstract

In this presentation we outline a framework applicable to wire media formed by sets of nonconnected
wires. In this framework, the macroscopic material response is described with more independent
degrees of freedom than usual. This allows formulating a system of local field equations with which
both boundary value problems and problems of radiation of the sources embedded into wire medium
can be solved efficiently.

1. Introduction

Wire media (WM) are metamaterials formed by arrays of long conductors — metallic wires — typically
embedded into a dielectric host. In uniaxial WM all the wires are oriented along the same axis, while
in WM with more than a single set of wires there can be more than one available direction for the
conductors. The ability to conduct electric current along sets of wires is the most characteristic feature
of WM that has a great impact on the macroscopic electromagnetic response. Namely, the strong spatial
dispersion in WM in the limit of very long wavelengths can be shown to result from redistribution of
electric charge along the wires, due to which the wires become locally charged. This effect is purely
quasi-static [1] and is analogous to the drift-diffusion phenomena in semiconductors which also lead to
the emergence of spatially dispersive (nonlocal) effects.

On the other hand, the wires in WM are similar to the conductors in transmission lines, so that each set of
wires along a given direction can be understood as a multiwire transmission line (TL). In such an analogy
the nonlocality of WM is due to the fact that TL modes propagate along the wires without diffraction
and efficiently “connect” separate regions within the metamaterial, so that the medium response at a
given point depends on the field values at distant points. Under a quasi-static approximation, the relation
between the full electromagnetic description of WM and the TL analogy can be readily established. This
has been done in our previous works (see [1, 2]).

2. Theory and Discussion

Here, we consider WM composed of three mutually orthogonal disconnected sets of wires, oriented along
x, y, andz axes, respectively. In this case the quasi-static treatment [1] results in the following system
of macroscopic field equations (the Maxwell equations) coupled to a number of TL-type equations for
the internal degrees of freedom associated with the TL modes propagating along the independent sets of
wires:

∇×E(r) = −jωµhH(r), (1)

∇×H(r) = jωεhE(r) + J(r) + J
ext(r), (2)

∂iIi(r) = −jωCiϕi(r), (3)

∂iϕi(r) = −(jωLi + Zw
i )Ii(r) + Ei(r) + V ext

i (r), (4)
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whereεh and µh are the parameters of the host; the indexi = x, y, z labels the sets of wires and the
respective components of the radius vectorr, with the notation∂i ≡ ∂/∂ri; Ii(r) andϕi(r) represent
the internal degrees of freedom associated with the current and the additional potential [1] within a given
set of wires,J(r) =

∑
i(Ii(r)/Ai)êi is the total average current density, withAi being the unit cell

area associated with each set of wires,Li, Ci, andZw
i are the effective inductance, capacitance and

self-impedance [1] (for example, ohmic resistance) per unit length of a wire in a given set. Note that
there is no implicit summation over repeating indices in (3) and (4). An important feature of the system
(1)–(4) is that it allows introducing a new type of source which has the physical meaning of the external
electromotive force per unit length of the wiresV ext

i [3].

Let us stress that Eqs. (1)–(4) constitute alocal framework for WM in which the effects of spatial dis-
persion are described by introducing a few internal degrees of freedom into the model. In our model
these functions,Ii(r) andϕi(r), have a clear physical meaning: one being related to the wire current
and the other to the additional potential at the wire surface acquired due to redistribution of the electric
charge along the wire [1]. The locality of this framework is seen from the fact that the material response
represented by the expressions on the right-hand side of Eqs. (1)–(4) (without the source terms) does not
depend on the spatial gradient∇ or any higher derivatives of the electromagnetic fields,Ii(r), andϕi(r).
Therefore, spatially inhomogeneous or layered WM can be treated within this framework rather trivially:
it is enough to assume that the material parametersεh, µh, Ci, Li, andZw

i are functions of the position
vectorr. Note that in our framework the boundary conditions (BCs) at abrupt interfaces follow naturally
from Eqs. (1)–(4) under the assumption of finiteness of the fields, currents and potentials at a boundary.
In the traditional nonlocal models that do not deal with the internal degrees of freedom directly the same
BCs appear in an obfuscated form of the so-called additional BCs (ABCs) [2].

When dealing with uniform and unbounded WM it is, of course, possible to eliminate the internal degrees
of freedom from the system (1)–(4), which leads in the end to the usual description of WM based on the
spatially dispersive permittivity tensorε(ω,k). Indeed, in the spatial Fourier domain∂i ↔ −jki, and
from (3) and (4) it follows that for the plane wavesJi = −jωεh(Ei + V ext

i )k2p,i/(k
2

h − jξikh − k2i /n
2
i ),

wherekh = ω
√
εhµh, k2p,i = µh/(LiAi), ni = LiCi/(εhµh), andξi = (Zw

i /Li)
√
εhµh. When this

expression for the current density is substituted into the Maxwell equations (1) and (2), it results in a
diagonal effective permittivityε(ω,k) with the componentsεii(ω, ki) = εh[1 − k2p,i/(k

2

h − jξikh −

k2i /n
2
i )]. Additionally, there appear (nonlocal) source terms proportional toV ext

i .

However, the formalism based on the nonlocal dielectric function can be applied without any assumptions
only to unbounded uniform WM. As soon as there is an interface at which the wires are cut, or the prop-
erties of the host change abruptly, one has to assume certain ABCs at the interface, because without such
additional conditions the boundary value problems become underdetermined. It is commonly accepted
that such ABCs cannot be derived from the Maxwell equations without knowing the microstructure of
the metamaterial — the fact which for sure puzzles many researchers working in the field. However,
from the point of view of our local framework such a situation is a mere consequence of eliminating
physically significant internal degrees of freedom! Therefore, it is not surprising that the information
contained within the spatially dispersive permittivityε(ω,k) and the macroscopic Maxwell equations is,
in general, not complete to solve boundary value problems, or problems involving nonuniform WM.

The local framework outlined above allows also for obtaining a closed-form expression for the Poynting
vector in WM [3]. We do it for the case of a nondispersive host (εh andµh are real constants) and metallic
wires described byZw

i = jωLkin
i + Ri, whereLkin

i is the effective kinetic inductance andRi is the
effective ohmic resistance per unit length of wires. These parameters are related to the plasma frequency
ωp and the collision frequencyΓ of the Drude model of wire metal and they also may be assumed
nondispersive. Therefore, we may rewrite Eqs. (1)–(4) in the time domain replacingjω → ∂/∂t, and
derive the following conservation law:∇ · S = −∂w

∂t
− Ploss + Pext, where

S = E×H+
∑

i

ϕiIi
Ai

êi, w =
εhE

2

2
+

µhH
2

2
+

∑

i

1

Ai

(
Ciϕ

2
i

2
+

Ltot
i I2i
2

)

, (5)
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Fig. 1: (From Ref. [3]) Uniaxial WM formed by a square lattice of metallic wires oriented along the
z-direction. (a) Excitation by a short vertical dipole. (b) Excitation by a voltage source. (c) Polar plot of
the directive gain of a short vertical dipole in the uniaxial WM at different frequencies of operation.

Ploss =
∑

i

RiI
2
i

Ai
, Pext =

∑

i

V ext
i Ii
Ai

−E · Jext , (6)

whereLtot
i = Li +Lkin

i . The vectorial quantityS is understood as the Poynting vector in WM, andPext

as the volume density of the power transferred by the external sources to the medium. In the absence
of loss, i.e. whenRi = 0, the termw is univocally identified with the density of stored energy. In
contrast, if loss is present, then it is generally impossible to separate the energy storage rate from the
energy loss rate when a metamaterial is considered macroscopically. However, if the microstructure of
a metamaterial is known, the stored energy can be found from a consistent physical model that fully
describes the processes within a unit volume of the metamaterial. Thus, if we assume that the Drude
model is such a consistent model for the dynamics of the free electron plasma in metals, thenw in (5)
preserves the meaning of the stored energy density even whenRi > 0. In this case, the quantityPloss

has the physical meaning of an instantaneous power loss density.

3. Examples and Conclusions

As an example of application of our local framework to real problems, we consider radiation of elemen-
tary sources embedded into a uniaxial WM [3] (Fig. 1). We assume that there is a pair of such sources: an
electric dipole oriented along the wires (along thez-axis) and a voltage source inserted into the wires. In
the local framework, such radiation problem is formulated by Eqs. (1)–(4) with delta-functional source
termsJext andV ext

z concentrated at the origin. Because the problem has cylindrical symmetry and all
the currents are along thez-axis, the problem may be solved by introducing the Hertz potential for the
electromagnetic fields, and an auxiliary potential describing the wave propagation governed by Eqs. (3)
and (4). In this case the system (1)–(4) reduces to a pair of second-order differential equations for the
potentials, which can be solved with standard techniques, and the fields can be found from the potentials.
For the field created by the vertical dipole an interesting result is obtained: the radiation pattern of such
a dipole within WM with perfectly conducting (PEC) wires approaches the pattern of a hypothetical
isotropic radiator when the frequency is close to the WM plasma frequency [Fig 1(c)]. We also find that
the dipole source and the voltage source produce very different radiation patterns. The radiation from
the voltage source in a PEC WM is characterized with a nondiffractive pattern of an infinite directivity,
with all the radiated power concentrated in a vicinity of a vertical line passing through the source.
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