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Abstract 

It is demonstrated that ideas previously developed under the context of electromagnetic metamate-
rials can be extended to a wide class of physical systems whose dynamics is described by a Hamil-
tonian. An effective-medium approach that enables characterizing the propagation of electron 
waves in graphene and semiconductor superlattices is outlined. In our framework, the time evolu-
tion of macroscopic states, as well as the electronic band structure, can be exactly determined by 
an effective Hamiltonian.  

1. Introduction 

Effective-medium theories are of key importance in the study of “low energy” physical phenomena 
since they enable reducing the inherent microscopic complexity of a physical system to a few effective 
parameters. Particularly, in the context of electromagnetic media, such a homogenization of the physi-
cal response is possible when the wavelength of the radiation is much longer than the characteristic 
building blocks of the material (atoms, molecules, etc), so that the intrinsic granularity of the system 
can be neglected, and the structure can be regarded as a continuous effective medium. Typically, the 
macroscopic response of a conventional medium is described simply with two parameters: a permittiv-
ity function and a permeability function [1]. 

With the emergence of electromagnetic metamaterials – composites whose electromagnetic response 
is mainly determined by artificially built-in features and not directly by the chemical composition –
these ideas have been greatly extended. The built-in features in a metamaterial effectively define a 
new length scale in the system (typically determined by the period a), and this can enable the emer-
gence of novel exotic physical phenomena such as negative refraction and artificial magnetism [2]. 
Because the period a is typically several orders of magnitude larger than the atomic scale, the electro-
magnetic response of the “meta-atoms” can be characterized using conventional macroscopic electro-
dynamics. For excitations such that the wavelength of radiation is much larger than a, the metamate-
rial may itself be regarded as a continuous medium. The process of determination of the effective pa-
rameters of the metamaterial may thus be described as a second level of homogenization of matter. 

Several homogenization methods have been proposed over the years to characterize the macroscopic 
response of composite electromagnetic media, e.g. [3-7]. In particular, some time ago a self-consistent 
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homogenization method was put forward to characterize periodic metamaterials formed by dielectric 
or metallic particles of arbitrary shapes and material parameters, taking into account both the effects of 
frequency and spatial dispersion [3-4]. Within this framework, the macroscopic response of the meta-
material is modeled by an effective dielectric function of the form ( ),efε ω k  with i↔ − ∇k  the wave 
vector and ω  the frequency. Thus, in general the dielectric function may depend on the spatial deriva-
tives, ( ), ,x y z∇ = ∂ ∂ ∂ , because of spatial dispersion. The effective dielectric response is defined in 

such a manner that for an arbitrary external macroscopic excitation described by an external current 
density extj , the induced macroscopic polarization vector 

gP  is exactly related to the macroscopic 

electric field E in the spectral domain by ( )( )0,efg ε ω ε= − ⋅P k I E . By definition, we say that extj  is a 

macroscopic current density if it is not more localized in space than the characteristic period of the 
metamaterial. More recently [4], it was shown that ( ),efε ω k  can also be determined without formally 
introducing an external excitation ( extj ). Specifically, within the framework of a time-domain formula-

tion it is possible to define ( ),efε ω k  as the response function that guarantees that for any initial time 

macroscopic field distribution for the microscopic electromagnetic fields the corresponding macro-
scopic fields satisfy ( )( )0,efg ε ω ε= − ⋅P k I E  in the spectral domain. The objective of this work is to 

prove that these ideas can be extended in a straightforward manner to a wide range of physical systems 
whose dynamics is described by a Hamiltonian. 

2. Hamiltonian formulation of the effective medium problem 

To begin with, we show that in the electromagnetic case the effective medium problem can be for-
mulated using a Hamiltonian formalism. The starting point is to note that the Maxwell’s equations in a 
continuous medium can be written as, 
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For standard isotropic non-dispersive magneto-dielectrics, the microscopic electric and magnetic 
fields, e  and h , are linked to the microscopic electric displacement and induction fields, d  and b , by 
the standard constitutive relations = ⋅g M f  where the material matrix M  is written in terms of the 
“microscopic” permittivity and permeability as shown in Eq. (1). Hence, the dynamics of the “micro-
scopic” electromagnetic fields (i.e. before any form of averaging on the scale of the unit cell of the 
metamaterial) can be described by a Schrödinger type equation of the form Ĥ i

t
ψ ψ∂=

∂
h  where ψ ↔ g  

is a six-component vector, and the operator Ĥ  is given by: 
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Evidently, this Hamiltonian does not represent the energy of the system, but is simply an operator that 
describes the dynamics of the classical electromagnetic field. The time evolution of the system is 
completely determined by the initial state 0 0t tψ = == g .  
Let us consider now an electromagnetic metamaterial, for which ( )=M M r  is a periodic function of 
space. The objective is to determine an effective Hamiltonian ˆ

efH  that describes the dynamics of the 

envelope wavefunction ψΨ ≡ , where .  represents a suitable spatial-averaging operator. In our 
case, Ψ  can be identified with the macroscopic electromagnetic field. We say that a state is macro-
scopic if it remains invariant after spatial averaging: ψ ψ= . We define the effective Hamiltonian in 
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such a manner that ˆ ˆ
efH HψΨ =  for any 0t >  and for any ψ  whose time evolution is determined by 

an initial time macroscopic state ( 0 0t tψ ψ= == ). This is analogous to the formulation of Ref. [4], 
where the effective dielectric response is determined by the time evolution of initial-time field distri-
butions that are macroscopic. A detailed analysis shows that in the electromagnetic case the effective 
Hamiltonian in the spectral domain is given by: 

( )10ˆ ,
0ef efH ω−− ×⎛ ⎞

= ⋅⎜ ⎟×⎝ ⎠

k
M k

k
h ,  where ( )
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and ( ),efε ω k  is defined precisely as in our previous works [3-4]. It can be proven that the photonic 
band structure of the metamaterial is exactly determined by ˆ

efH , and can be obtained by solving  

( )( )ˆdet , 0efH ω ω− =k Ih . 

The remarkable point here is that these ideas can be readily extended to any periodic system whose 
dynamics is described by a Hamiltonian, particularly to the field of electronics where semiconductor 
and graphene superlattices may be regarded as the counterpart of electromagnetic metamaterials [8]. 
Superlattices were proposed by Esaki and Tsu more than forty years ago [9], who suggested that by 
either periodically doping a monocrystalline semiconductor or by varying the composition of the alloy, 
quantum mechanical effects may be observed in a new physical scale. Typically, the electronic struc-
ture of superlattices and related heterostructures is described using perturbation theory methods, such 
as the k⋅p method or Bastard’s envelope function approximation.  

At the conference, we will show that our effective medium approach (extended to electronics in the 
context of the one-body Schrödinger equation) provides an alternative way for describing the effective 
response of graphene and III-V and II-VI semiconductor superlattices, and enables establishing 
straightforward analogies with electromagnetic metamaterials. In particular, for the case of one-
dimensional graphene superlattices, such that the electrostatic potential is a stepwise continuous peri-
odic function (Kronig-Penney type model) [8], we will show that the low-energy physics in these 
structures can be characterized simply in terms of an energy dependent effective potential and an ani-
sotropy tensor that characterizes the pseudospin. Based on this effective-medium model, we predict a 
novel perfect tunneling effect in graphene superlattices [8], showing that electron waves with a spe-
cific energy can be perfectly tunneled through a nanomaterial with specific properties, analogous to 
the perfect lens proposed for electromagnetic metamaterials [2], but based on entirely new physical 
principles. 
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