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Abstract

We report on mesoscopic effects associated with the boundaries of finite discrete metamaterial sam-
ples, which can invalidate an effective medium description. We make a proposal in order to avoid
such effects by a proper choice of the boundary configuration.

Usually, effective medium homogenization theories of metamaterial structures consider unbounded sys-
tems. However, all metamaterial bodies must have finite size. While it can be expected that extremely
big samples of metamaterials (with perhaps millions of elements) will show a behavior quite similar to
that of the unbounded medium, this is not clear for realistic metamaterial samples (up to thousands of
elements). This raises the issue of the surface resonances, which may appear even in the quasi-static
regime and can significantly deviate from the behavior expected for the effective medium [1], [2].
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Fig. 1: (a) Sketch of the cube with the corresponding coordinate system. Note that the actual number
of elements may vary which is not reflected in this sketch. (b, c) Two options for the isotropic surface
configuration (detail near the corners): “flat” geometry (b) and “ragged” geometry (c)

In order to elucidate this question, we analyzed the behavior of a cubic sample of metamaterial made
of a finite cubic lattice of resonant rings. This sample is sketched in Fig.1, and is made of symmetric
resonant rings which, in practice, can be made (at low frequencies) by simply loading a metallic ring
with a capacitor [3]. In order to analyze surface resonances, we tried with two different terminations,
which will be named as “flat” and “ragged”, also shown in Fig.1: the “flat” geometry includes a external
layer of rings, which is absent on the “ragged” termination. Finally, in order to have an electrically small
size for the unit cell, we studied a system with strongly subwavelength rings with the lattice constanta
50 times smaller than the free-space wavelength, and radius of the ringr0 = a/3.1. The quality factor
of the resonators has been chosen rather high (Q = 500) in order to achieve better clarity in the results.
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A convenient macroscopic characteristic that can be attributed to the studied samples is the normalized
polarizability: the total magnetic moment of the sample per unit external magnetic field and per unit
volume, which for continuous medium samples of subwavelength size is independent of the size. To find
the polarizability of our discrete cubes, we solved a system of circuit equations for coupled resonators
[4], assuming a uniform external magnetic field perpendicular to the face of the cube. The total magnetic
moment is computed by summing the individual magnetic moments of each ring. The results obtained
for samples of different size are shown in Fig.2. As it can be seen, there are significant differences
between the normalized polarizabilities of samples, without a clear trend to a common limit, specially
for the “flat” configuration.

−40

−30

−20

−10

0

10

20

30

40

−40

−30

−20

−10

0

10

20

30

40

195 198 201 204 207 210 195 198 201 204 207 210

R
e(

 n
o
rm

al
iz

ed
 p

o
la

ri
za

b
il

it
y
 )

R
e(

 n
o
rm

al
iz

ed
 p

o
la

ri
za

b
il

it
y
 )

11 Flat

8 Flat

5 Flat

11 Ragged

8 Ragged

5 Ragged

(a) (b)

k0a·104
k0a·104

Fig. 2: Real part of the normalized polarizability (arbitrary units) of discrete cubes with 5, 8 and 11
layers of rings in each direction, having either a “flat” (a) or a “ragged” geometry (b).

Further distinctions are revealed by comparing (Fig.3) discrete cubes with an equivalent cube made of a
homogeneous medium, with the effective permeability given by Eq. (13) of Ref.[5]. The polarizability
of the homogeneous cube was found using the CST “Microwave Studio” commercial package. In order
to avoid the appearance of multiple non-physical resonances, the edges and corners of the homogeneous
cube must be rounded [6]. We have used a rounding corresponding to one half of the unit cell size of the
discrete cubes. Fig.3 shows that, although the polarizability of discrete cubes are different from that of
a homogeneous cube, the results for the “ragged” configuration are significantly closer to the results for
the homogeneous cube than to those of the “flat” cube.
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Fig. 3: Real (a) and imaginary (b) parts of the normalized polarizability (arbitrary units) of discrete cubes
with 11 layers in each direction, having either a “flat” geometry (dashed lines) or ”ragged” geometry
(dotted lines), in comparison with the polarizability of a homogeneous cube (solid lines) .

We can now try to retrieve the “permeability” of the samples from their normalized polarizabilityα. For
a continuous sample we can write without loss of generality

α = A
µ− 1

µ+ C
(1)
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whereA(ω) andC(ω) are real coefficients which depend on the geometry of the sample (for a spherical
sample it isA = 3 andC = 2, but for a cubic sample they are rather complicated functions of frequency).
Therefore, we can try to retrieve the “permeability” of the sample from Eq.1 by using the obtained results
for the normalized polarizability, and the coefficientsA andC obtained for the continuous sample. These
results are shown in Fig.4 for the discrete samples of Fig.3. It is very remarkable that, unlike the curve
of the “flat” cube, the curve corresponding to the “ragged” configuration is very similar to the actual
permeability of a homogeneous cube.
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Fig. 4: A comparison between the permeability of a homogeneous cube (solid line) and the “permeabil-
ity” obtained for two11 × 11 layer discrete cubes with a “flat” geometry (dashed lines) or a “ragged”
geometry (dotted lines); real (a) and imaginary (b) parts .

In summary, we have shown that the behavior of finite metamaterial samples can deviate significantly
from continuous medium expectations. From our results we conclude that for cubic resonant ring meta-
material samples with up to several thousands of elements, the “ragged” boundary configuration is better
described in terms of the effective parameters of an unbounded metamaterial than the “flat” boundary
configuration. We are confident that, for the size range in which most practical metamaterials fit, our
conclusions provide valuable information and design guidelines, allowing for the efficient control over
the properties of finite metamaterial structures. Our results can be also of interest for the general theory
of mesoscopic electromagnetic systems.

Acknowledgments: This work has been supported by the Spanish Ministry of Science and Innovation and by
European Union FEDER funds (project No. CSD2008-00066 and TEC2010-16948), by the Czech Grant Agency
(project No. 102/09/0314), by the Czech Technical University in Prague (project No. SGS10/271/OHK3/3T/13)
and by the Australian Research Council.

References

[1] R. Marques, M. Lapine, and L. Jelinek, Edge effects in finite size resonant ring metamaterials, inProc.
Metamaterials Int. Conf. Complex Electromagn. Media Metamater., Karlsruhe, Germany, 2010, pp. 330-332.

[2] R. Marques, L. Jelinek, M. J. Freire, J. D. Baena and M. Lapine, Bulk Metamaterials Made of Resonant
Rings,Proceedings of the IEEE, vol. 99 pp. 1660-1668, 2011.

[3] S. A. Schelkunoff and H. T. FriisAntennas Theory and Practice (Wiley), 1966.
[4] M. Lapine, L. Jelinek, R. Marques, M.J. Freire, Exact modelling method for discrete finite metamaterial lens

IET Microw. Antennas Propag., vol. 4, pp. 1132-1139, 2010.
[5] J. D. Baena, L. Jelinek, R. Marques and M. Silveirinha, Unified homogenization theory for magnetoinductive

and electromagnetic waves in split-ring metamaterials,Phys. Rev. A, vol. 78, 013842, 2008.
[6] H. Wallen, H. Kettunen and A. Sihvola, Surface modes of negative-parameter interfaces and the importance

of rounding sharp corners,Metamaterials, vol. 2, pp. 113-121, 2008

c© 2012 Metamorphose VIISBN 978-952-67611-2-1 - 579 -




