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Abstract 

A duality relation between the impedances of a single original element and its complementary 
element is deduced. It is also demonstrated that this duality property holds also for parallel or se-
ries associations of several circuit elements. This work can help to design 2D optical circuits with 
dual properties. 

1. Introduction 

A few years ago, Nader Engheta and co-workers proposed the theoretical possibility of extending the 
circuit theory to the optical spectrum by arranging plasmonic and non-plasmonic elements into a 
nanostructure of size much smaller than the wavelength [1]. This idea is nicely summarized by saying 
that pieces with positive permittivity behaves like nanocapacitors, while those with negative permittiv-
ity like nanoinductors. Even nanoresistors enter to play a role because the permittivity must have a 
certain imaginary part. In order to encapsulate all elements and make their impedance independent on 
the shape of the external field, they also proposed to cover all pieces with thin slabs of Epsilon Near 
Zero (ENZ) and Very Large Epsilon (VLE) media [2]. ENZ forces the displacement current to be par-
allel to the boundary, so that it can be considered as an insulator, while VLE forces the displacement 
current to be orthogonal to the boundary, so that it is like an electrode. Separately, at least since 40’s, 
the duality property has played an important role in conventional planar electronic circuits [3]. For 
instance, it has been used for designing complementary filters starting from original filters, in such a 
way that the passbands/stopbands change to stopbands/passband over the same frequency range. That 
duality property was based on the duality of the electric and magnetic fields and the interchange be-
tween electric and magnetic walls. However, in the framework of optical nanocircuits the electric 
walls cannot exist because of the plasmonic behaviour of metals at so high frequencies. In this paper 
we try to bring the duality principle to the frame of 2D optical nanocircuits, with the hope that it could 
be used in future designs of dual or complementary structures.    

2. The Theorem of Complementarity 

Let us assume that the quasi-electrostatic approximation is valid and we are dealing with a problem 
without free charge, so that 0∇ ⋅ =D  and 0∇× ≈E , where D and E are going to be considered related 
by ε=D Ε  and the permittivity ε is isotropic and homogeneous by pieces. Let us also assume transla-
tion symmetry along the z-axis, so that the problem is 2D. We have demonstrated in [4] that, given a 
known solution E of a certain problem, we can define a complementary problem whose field E’ and 
permittivities are obtained from the original one by using 
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ˆ'  ;     / / ' / 'i i i i j i j j ik k k ε ε ε ε= × = =E z E  (1)

where i, j = 1...n are indexes indicating two particular regions among n regions. Physically, it means 
that the field is rotated by 90° and rescaled by the factor ki, and the regions are filled with new values 
of permittivies ε’i. It can be demonstrated that this theorem still holds when some free current density 

0≠J  is present, but only if we choose the complementary source ˆ' ( ' / )i i i i ikε ε= ×J z J . 

3. Duality for a single circuit element 

In Fig. 1 examples of a single circuit element (a) and its complementary circuit (b) are shown. In pass-
ing from the original to the complementary circuit, the shape of the boundaries is kept the same and 
the permittivities are changed by using relations of Eq. (3). Different colors mean different values of 
the permittivity filling each region: white for finite and non-zero permittivity, red for ENZ medium, 
and green for VLE medium. For the original structure, region #1 (white) corresponds to the core of the 
element, while regions #2 and #3 are connector and insulator, respectively. Dashed lines represent the 
displacement current density flowing along the circuit. By using (1), we get 

1 1 1 2 2 2 3 3 3ˆ ˆ ˆ'  ;     '  ;     'k k k= × = × = ×E z E E z E E z E  (2)

1 2 1 2 2 1 2 3 2 3 3 2 3 1 3 1 1 3/ / ' / '  ;      / / ' / '  ;      / / ' / 'k k k k k kε ε ε ε ε ε ε ε ε ε ε ε= = = = = =  (3)

By taking ε’1 as the free unknown of (3), we get 2 1 2 1' = ( / ) 'ε ε ε ε and 3 1 3 1' = ( / ) 'ε ε ε ε . And taking k1 as 
the free unknown of (3), we can express k2 and k3 in terms of k1 and after replace them into the formu-
las (2) in order to get the electric fields 1 1 1ˆ' k= ×E z E  (finite), 2 2 1 1 2ˆ' ( / ) 0kε ε= × →∞ ⋅E z E  (finite), 
and 3 3 1 1 3ˆ' ( / ) 0 [finite] 0kε ε= × → ⋅ →E z E . Physically, in the region #1 the field has been rotated 90° 
and rescaled by some factor, and regions #2 and #3 have interchanged their roles (in the complementa-
ry circuit, #2 is insulator and #3 is connector). It is obvious that the impedance for ENZ regions tends 
to infinity and the impedance for VLE regions tends to zero, thus we avoid their corresponding discus-
sions.  Regarding the region #1, the core of the circuit, we can define the impedances for the original 
and the complementary structures and multiply them as follows: 

1 1

1 1

1 1

2 2
1 11 1 1 1

ˆ ˆ' ' '' 1'  
' 'ˆ ˆ' ' '

B A

A B

dl dlV VZZ
I I hj da j da ω ε εωε ωε

− ⋅ − ⋅ −
= = =

⋅ ⋅

∫ ∫
∫∫ ∫∫

E l E l

E n E n
 (4)

where in the last step we have used the facts that 1 1 1
ˆ ˆ' ' k⋅ = ⋅E l E n  and 1 1 1

ˆˆ' ' k⋅ = ⋅E n E l ., and h is the 
thickness of the structure in the z direction (ideally it is infinite, but not for real samples). Note the 
similarities with the duality property in electronics 2

0' / 4ZZ η=  [3], being η0 the vacuum impedance. 

 

 
 

Fig. 1: Example of an original circuit element (a) and its corresponding complementary circuit (b). 
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4. Duality for series and parallel connections 

Let us consider the structures shown in Fig. 2. By applying Eq. (3) to the interfaces #1-connector and 
the #2-connector and dividing them, we get 1 2 1 2 2 1/ / ' / 'k k ε ε ε ε= = . By going from the original circuit 
(Fig. 2(a)) to the complementary circuit (Fig. 2(b)), the connectors (green) and insulators (red) inter-
change their roles and so also positions which is in accordance with the rotation of 90º applied to the 
field. By using (3) and the fact that the flux of D through the boundaries A2 and A3 of the original 
problem (Fig. 2(a)) must be equal, we can easily write the next calculation 

3 3 3 3 2 2

2 2 2 1 2 1 2 1 1 2 2 1 1 1 1 1' ( / ) ( / ) ( / ) '
A A A A A A

E dl k E dl k E dl k E dl k E dl E dlε ε ε ε ε ε= = = = =∫ ∫ ∫ ∫ ∫ ∫  (5)

Looking at the ends of this equation, it is clear that the voltages in regions #1 and #2 of Fig. 2(b) are 
equals, so that the complementary structure works like a parallel connection. Reciprocally, if we were 
started from a parallel connection then it would turn into a series connection. Finally, let us imagine 
that we take the complementary structure with ε’1 = ε2 and ε’2 = ε1 (a simple interchange of the two 
media in cores). Applying (4) to each region we get 2 2 1

1 1 2 2 1 2' ' ( )Z Z Z Z hω ε ε −= = − . And the product of 
the effective impedances of the two structures is 

1 2

1 1 2 2 1
1 2 1 2' ( ) /( ' ' ) ( )eff effZ Z Z Z Z Z hω ε ε− − −= + + = −  

which interestingly coincides with (4). It is now obvious that the duality property is inherited by more 
complex associations made of several circuit elements. 

 

 
 

Fig. 2: Example of an original structure made of two elements (a) and its complementary structure (b). 

5. Conclusion 

The duality principle previously used in low frequency electronics, RF and microwaves [3], have been 
extended to the new branch of physics called optical nanocircuits [2].  Equation (4) summarizes the 
duality property for a single 2D nanocircuit. Besides, we demonstrated that a series/parallel connection 
of the original structure is replaced by a parallel/series connection in the complementary structure. It is 
worth to note that, although Fig. 1 and Fig. 2 show rectangular examples, the demonstration of equa-
tions (4) and (5) are also valid for structures with general curved shape of the boundaries. We think 
that these ideas open the door to the design of 2D optical nanocircuits with dual responses. 
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