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Abstract 

We show that depending on the values of the coupling constants, two different scenarios for the 

stationary behavior of a chain of interacting spasers may be realized: (1) all the spasers are 

synchronized and oscillate with a unique phase and (2) a nonlinear autowave travels along the 

chain. In the latter scenario, the traveling wave is harmonic, unlike excitations in other known 

nonlinear systems. Due to the nonlinear nature of the system, any initial distribution of spaser 

states evolves into one of these steady states.  

1. Introduction 

In the last decade, quantum nanoplasmonics has experienced explosive growth due to numerous 

revolutionary applications in optics and optoelectronics [1]. A combination of a nanoscale active 

medium with the population inversion results in the emergence of a nanoplasmonic counterpart of the 

laser – surface plasmon amplification by stimulated emission of radiation (spaser) first proposed by 

Bergman and Stockman [2] and realized experimentally by Noginov et al. [3]. A single spaser consists 

of a metal nanoparticle (NP) coupled with a quantum dot (QD) which population inversion caused by 

an external source. Above the threshold inversion, the spaser generates a coherent near-field, localized 

at the metal NP. 

If spasers are used as a gain medium for the loss compensation, one must understand the functioning 

of a system of interacting spasers distributed regularly or randomly in a dielectric matrix. In the 

present communication, we theoretically study the collective interaction of self-oscillationing spasers 

above the spasing threshold. We consider the simplest example of a spasers array – a regular chain of 

spasers. In this case, the collective near-field interaction between spasers can significantly change the 

threshold of the generation and even lead to new phenomena and instabilities in these structures. 

2. Collective excitations of spaser chains 

We show that depending on the strength of the interaction between the QD and the NP of the nearest 

spasers, either a synchronized oscillation of all the spasers in the chain or a harmonic autowave 

travelling along the chain may realize. The pumped QD may either excite its own spaser so that all 

spasers are synchronized or cooperating with the other QDs, the pumped QD may excite a plasmonic 

wave traveling along the chain. This is the wave of the NP polarization which dispersion equation 

( )k  is similar to the one predicted in Refs. [4] -[7] for linear systems such as a chain of plasmonic 

NPs. This dispersion equation has the form 
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where 2 / ( )eff NP NP a a       , 
NP NP  is the coupling constant between neighboring NP, 

SP , 

a , TLS , and   are frequencies and relaxation times of the surface plasmon and the two-level QD, 

respectively, b  is the distance between neighboring spasers. Unlike the general case of a wave 

propagating in a nonlinear lattice [4], the nonlinear character of the spasers’ response to an external 

field results neither in soliton nor in kink solutions. Rather, this response is a perfectly harmonic wave. 

However, unlike harmonic waves in linear systems, in a chain of spasers, this wave has a fixed value 

of the wavenumber, which depends on the coupling constant between the QD and the NP of 

neighboring spasers, 
NP TLS . For positive values of the coupling constant, 

R , of the QD and the NP 

inside the spaser, we have  
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and for 0R   
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Here *

NP TLS  is the threshold value of coupling constant between QD and NP of neighboring spasers 

 
2

* 0.5 eff

NP TLS NP NP R      (4) 
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Fig. 1. The dependencies of the wave number of stable solution of Eqs. (2) and (3) for 0R   and 

0R   respectively. The shaded areas correspond to leaky wave solutions (see the comment at the 

end of conclusion). 
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From Fig.1, one can see that depending on the value of the coupling constant, 
NP TLS , two different 

scenarios for the stationary behavior of a chain of interacting spasers may be realized: (1) all the 

spasers are synchronized and oscillate with in phase and (2) a nonlinear autowave travels along the 

chain. In the latter scenario, the traveling wave is harmonic unlike excitations in other known 

nonlinear systems [8]. The amplitude of this wave and its wave number are strictly determined by 

pumping and the coupling constants. Due to the nonlinear nature of the system, any initial distribution 

of spasers’ polarization evolves into one of these steady states.  

3. Conclusion 

In this paper, we have studied excitations in a chain of interacting spasers. We have shown 

that, depending on the strength of the interaction between a QD and the nearest NP, either a 

synchronized oscillation of all the spasers or a harmonic autowave travelling along the chain may 

arise. Thus, the pumped QD may either excite its own spasers so that all spasers are synchronized or 

cooperating with the other QDs, the pumped QD may excite a plasmonic wave traveling along the 

chain. This is the wave of NP polarization whose dispersion is similar to that predicted in Refs. [4] - 

[7] for linear systems. Unlike the general case of a wave propagating in a nonlinear lattice [8], the 

nonlinear character of the spasers’ response to an external field results neither in soliton nor in kink 

solutions. Rather, the response is a perfectly harmonic wave. However, unlike harmonic waves in 

linear systems, in a chain of spasers, (i) the wave has a fixed value of the wavenumber, which is 

determined by the minimum value of the pumping threshold and the values of the coupling constants, 

(ii) its amplitude also has a fixed value, which is determined by the pumping strength, and (iii) its 

propagation direction is determined by the initial conditions. 

The results obtained are valid for synchronized waves with wavenumbers k  greater than an 

optical wavenumber in the surrounding space 0k . If 0k k , the waves become leaky, radiative 

emission becomes substantial and the lasing would be initiated in the spaser [9]. 
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