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Abstract

Complementarity and Babinet principle are widely used concepts in optics and electronics. How-
ever, Babinet principle and complementarity can be only rigorously shown for infinitely thin perfect
conducting screens. The extension of this proof to the optical range, where metals must be thick
and characterized as negative permittivity dielectrics rather than as perfect conductors is not straight-
forward. Here, we explore the physics behind the generalization of Babinet and complementarity
concepts to optical planar nano-circuits and metamaterials.

1. Theory

In this contribution we will explore the justification and the usefulness of the concepts of complementar-
ity and Babinet principle in planar optical nano-circuits [1] - [3] and metamaterials [4], [5] operating in
the optical range.
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Fig. 1: Illustration of a planar nano-circuit like those analyzed in this contribution.

To begin with, let us consider the two-dimensional (2D) problem shown in Fig.1. It is a 2D piecewise
homogeneous region filled by some media with relative (to vacuum) dielectric constants εi, which sup-
ports a quasi-electrostatic electric field E = −∇tϕ(x, y) = −ux∂xϕ − uy∂yϕ, where ϕ(x, y) satisfies
Laplace’s equation ∇2

tϕ = 0. It is worth to mention that bound solutions for ϕ(x, y) may exist if there is
at least one εi with Re(εi) < 0, and at least one εj with Re(εj) > 0. Assuming that this solution exists,
the electric field inside each region must satisfy ∇t × Ei = 0 and ∇t · Ei = 0, as well as the boundary
conditions at the border between i and j media n× (Ei −Ej) = 0 and n · (εiEi − εjEj) = 0, where n
is the unit vector normal to this border and contained in the x− y plane. The “complementary” structure
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is obtained by substituting in Fig.1 the permittivities εi by the “complementary” permittivities ε′i defined
by:

ε′i = C1/εi (1)

where C1 is an arbitrary constant. This definition of “complementarity” includes the conventional one as
a particular case: when there are only two media and C1 = ε1ε2.

The “complementary” fields E′
i inside each region of the complementary structure are defined by:

E′
i = C2 εi uz ×Ei (2)

where C2 is an arbitrary constant. It can be shown that these fields also satisfy the quasi-electrostatic
equations for the complementary structure. Let be A, B, C and D some fixed points in the original and
the complementary structures (see Fig.1). Let us define the voltage integral between A and B and the
current integral through the path C-D as:

VAB =

∫ B

A
E · l dl ; ICD = jωε0 h

∫ D

C
ε(r)E · (uz × l) dl (3)

where h is the thickness of the circuit board. Let us assume that we can define some meaningful
impedances Z = VAB/ICD for the structure of Fig.1 and Z ′ = V ′

CD/I
′
AB for its complementary one.

By using (1) in (2) we obtain:
h2k2C1 Z Z ′ = −Z2

0 (4)

where k = ω
√
ε0µ0 is the phase constant and Z0 =

√
µ0/ε0 is the vacuum impedance.

Let us now consider a diffraction screen made of a periodic planar nano-circuit board. Since nano-circuits
must be electrically small in order to be described in the frame of quasi-electrostatics, the periodicity of
the screen must be small too. Therefore, we can describe the screen as a surface impedance sheet. This
surface impedance will be, in general, a 2D symmetric tensor whose main values are related with the
nano-circuit impedances. Specifically, the surface impedance along a main axis of this tensor can be
computed as Zs = ZlCD/lAB with Z defined above with the paths A−B and C −D chosen as straight
lines going across the whole unit cell and directed along the proper main axes of the surface impedance
tensor (lAB and lCD are the lengths of the corresponding paths). Specifically, this surface impedance
Zs describes the behavior of the screen for incident light polarized along the A → B direction. For the
“complementary” screen (made of the complementary nano-circuit), the surface impedance for incident
light of orthogonal polarization is Z ′

s = Z ′lAB/lCD, with Z ′ defined above. The transmission coefficient
for the first screen and the considered incident light is:

t =
2Zs

Z0 + 2Zs
(5)

and the transmission coefficient for the complementary screen:

t′ =
2Z ′

s

Z0 + 2Z ′
s

=
Z0

Z0 + 2KZs
; K = −h2k2C1/4 (6)

which for K = 1 reproduces the well known Babinet relation t+ t′ = 1 for perfect conducting comple-
mentary screens. If K ̸= 1, Eqs. 5-6 still reproduce many of the main predictions of Babinet principle.
Specifically, when |Z| → 0, the transmittance |t|2 has a zero, and according to (6), |t′|2 has a maximum.
For lossy media |Z| never goes to zero, and the minimum of |t|2 occurs at the minimum of |Z|, whereas
the maximum of |t′|2 occurs at the minimum of |KZ|. Since K is a function of frequency, this may lead
to some deviation between the minimum of |t|2 and the maximum of |t′|2.

Eqs. 5-6 can be considered as the generalization of Babinet principle for planar nano-circuit screens. It
is worth to mention, however, that these expressions are only approximate: they are valid in the quasi-
electrostatic limit and as far as the effect of fringing fields can be neglected in order to calculate the total
current in the screen. Since these constrains are approximately fulfilled by many planar nano-circuit
boards and metallic metamaterial “atoms” operating at optical frequencies, this theory is expected to be
useful for the analysis of these structures.
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2. Results

In order to check the accuracy of our theory, it has been applied to the analysis of the structure shown
in the inset of Fig.?? (left). It is a 1D diffraction screen made of alternating layers of copper and silicon
(ε ≈ 11.9) which can be seen as the realization of an optical nano-circuit [6]. We first computed the
transmittance through the screen by using the commercial solver CST Microwave Studio, and then ob-
tained the transmittance through the complementary screen from (5)-(6) after elimination of the common
variable Z. The results are shown in Fig.??, where a very good agreement between our theory and the
electromagnetic simulations can be observed. The results coming from conventional Babinet principle
(t + t′ = 1) are also shown in the Figure. They show a significant deviation from the computed re-
sults, as it can be expected from the properties of the media involved in the screen. Our theory has been
also applied to the computation of the transmittance through screens made of conventional and comple-
mentary SRRs operating in the optical range. Some results can be seen in Fig.?? (right), where it can
be appreciated how they approaches reality better than conventional Babinet principle (t + t′ = 1), in
spite of the fact that SRRs can not be considered as purely quasi-electrostatic entities except at very high
frequencies, i.e. beyond saturation [7].
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Fig. 2: Left: transmission through two complementary 1D diffraction screens made of alternating layers
of copper and silicon (unit cells shown aside). Dimensions are w1 = 50 nm, w2 = 10 nm and h = 25 nm.
Right: transmission through complementary silver SRR and CSRR screens with r = 100 nm, g = 10
nm, w = 30 nm and h = 60 nm. Periodicity is 250 nm.

3. Conclusion

Physical insight into complementarity at optical frequencies has been provided. Classical concepts of
complementarity and Babinet principle have been extended to planar complementary nano-circuits and
metamaterials. Results of our theorem have been validated with full wave electromagnetic simulation
showing improved accuracy respect to standard Babinet principle.
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