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Abstract

Omega material is a reciprocal bi-anisotropic material with an antisymmetric magnetoelectric dyadic
(e.g., a composite formed by conductive Ω-shaped particles). In this presentation we will discuss
the extreme electromagnetic properties of omega materials in the limiting case of nihility, when both
permittivity and permeability of the medium tend to zero, and the magnetoelectric parameter alone
defines the material response. Among other effects, we show that the omega nihility material provides
the extreme asymmetry in reflection from a material slab: The reflection coefficients from the two
opposite sides differ by sign, while the transmission coefficient is symmetric as in any reciprocal-
material slab.

1. Introduction

It is well known that the shape and dimensions of chiral particles (for example, helices) can be optimized
in such a way that these optimal helices radiate waves of only one circular polarization, whatever is the
exciting field (e.g. [1, 2]). The difference of the propagation factors β of the two (circularly polarized)
eigenwaves in isotropic chiral media is defined by the chirality parameter κ in the Tellegen formalism
as β = k0(n ± κ), where k0 = ω

√
ϵ0µ0 is the free-space wavenumber and n =

√
ϵµ/(ϵ0µ0) is the

refractive index. In the extreme case when n → 0 but κ ̸= 0, mixtures of optimal spirals realize effective
media with the propagation factor β = −k0 for one of the circular polarizations, while the same medium
is transparent for the orthogonal circular polarization [3]. This extreme-parameter medium is called
chiral nihility [4]. The concept of chiral nihility lead to understanding of the chiral route to negative
refraction and superlensing with the use of chiral structures. In the contents of this work, we can say that
the asymmetry in the propagation constants of the two eigenwaves comes to its extreme (the two values
differ by sign) in the limiting case of chiral nihility. The wave impedances of the two eigenwaves are
always the same as they do not depend on the chirality parameter κ.

More recently, it was understood that there are optimal parameters (and the optimal shapes and sizes)
also for the other fundamental class of reciprocal bi-anisotropic media: Omega materials [5]. In this case
the magnetoelectric dyadic is antisymmetric and the material relations take the form (uniaxial material,
the axis along z0)

D = ϵ ·E+ j
√
ϵ0µ0Kz0 ×H, B = µ ·H+ j

√
ϵ0µ0Kz0 ×E (1)

Here, ϵ = ϵ0(ϵtIt + ϵnz0z0), µ = µ0(µtIt + µnz0z0), and It is the two-dimensional unit dyadic.
The material parameter K measures the strength of magnetoelectric coupling and it is called the omega
parameter.

In contrast to chiral media where the chirality breaks the symmetry of the propagation constants of
eigenwaves while the wave impedances are not affected, in omega materials the properties are dual:
Magneto-electric coupling breaks the symmetry of the wave impedances while the propagation constants
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remain symmetric. We expect that omega nihility media may have extreme properties similar (but dual)
to those in the chiral nihility media.

The goal of this work is to study fundamental properties of omega materials in the case when the permit-
tivity and permeability are negligibly small as compared with the magneto-electric coupling coefficient
K and understand what kind of extreme wave properties can be expected for such special materials.

2. Omega nihility

For the uniaxial omega media the Maxwell equations after two-dimensional Fourier transform in the
transverse plane take the form [6]

−jkt ×E+
∂

∂z
z0 ×Et = −jω ¯̄µ ·H+ k0Kz0 ×Et

−jkt ×H+
∂

∂z
z0 ×Ht = jω¯̄ϵ ·E− k0Kz0 ×Ht

(2)

Here, kt is the transverse component of the wave vector and the axis of the uniaxial material is along the
unit vector z0.

Let us assume that ϵt,n, µt,n are negligibly small. To investigate wave solutions in this case, one approach
is to simply set ϵt,n, µt,n to be zero and solve the field equations. Setting ϵt,n and µt,n to zero in Eq. 2,
we get

kt ×Et = 0, kt ×Ht = 0 (3)

and
−jEnkt −

(
∂

∂z
− k0K

)
Et = 0, −jHnkt −

(
∂

∂z
− k0K

)
Ht = 0 (4)

As it is seen from Eqs. 3 and 4, there are no propagating waves in this medium. But, what will happen
when ϵ and µ tend to zero with possibly different rates? Will the results be the same? It appears that when
we set the permittivity and permeability to be absolutely zero from the beginning, some possible solutions
are suppressed. Considering this, one can solve the equations in the general case and then investigate
the results when the parameters go to zero with different rates. Now, using the known solution for wave
propagation in the general bi-anisotropic case [6], we want to consider the propagation wave behaviour
when the parameters go to zero at different rates. We start with the case in which the permittivity and
permeability approach zero as linear functions possibly with different slopes, writing

ϵt = etl, ϵn = enl, µt = mtl, µn = mnl, and l → 0 (5)

where et, en, mt, and mn are constants. Parameter l can be, for example, the frequency shift from the
nihility point. Substitution of a plane-wave solution in the form exp(−jβz) in Eq. (2), the propagation
factor β can be solved as

β2

k20
= −K2 − k2t

k20

1

2enmn
[(etmn + enmt)± (etmn − enmt)] (6)

We see that the resulting dispersion equation depends on the rates with which different components of
the permittivity and permeability dyadics approach zero. In particular, if ϵt,n and µt,n tend to zero with
different rates, it is possible to realize propagating or evanescent wave regime in the lossless medium.
An exception is the case of axial propagation (kt = 0, or propagation along the z axis), where the result
is same for arbitrary slopes of the linear functions (5):

β2

k20
= −K2 (7)

The waves along the axis are evanescent in the lossless case.
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The wave impedances for the eigenwaves propagating along the axis (kt = 0) read

ZTM
± = ZTE

± = lim
l→0

[
j
1

et

√
µ0

ϵ0
(K ±K)

1

l

]
(8)

As we see, the asymmetry in the wave impedances for oppositely-bound waves indeed goes into extreme:
For one direction we have ZTM

+ = ZTE
+ = j∞ and for the opposite direction ZTM

− = ZTE
− = 0.

Next we consider a slab filled with an omega nihility material (the axis is normal to the interfaces) in free
space under illumination of a normally incident plane wave. Reflection and transmission coefficients can
be easily calculated using the known vector-transmission-line model with different wave impedances for
eigenwaves travelling in the opposite directions [6, 7]. This gives the following simple formulas:

R± = ±−1 + e−2jβd

1 + e−2jβd
= ∓j tan(βd), T =

2e−jβd

1 + e−2jβd
=

1

cos(βd)
(9)

The two signs in the reflection formula correspond to the illumination from the opposite sides of the slab.
As expected, the asymmetry in the reflection properties goes into extreme: The reflection coefficients
differ by sign. The transmission coefficient is, of course, symmetric as in any reciprocal structure. Here
we have assumed that losses are negligible. In this case the propagation constant β = ±jKk0 is purely
imaginary (7), and it is easy to check that the energy conservation relation |R±|2+ |T |2 = 1 is identically
satisfied. In the limit of d → ∞ (half-space) we see that the reflection coefficient tends to ±1 depending
on the sign of the coupling coefficient. Thus, reversing the sign of K, we have either an electric or
magnetic wall behaviour at the interface.

3. Conclusion

Exotic properties of omega nihility have been considered. It was found that the omega nihility material
exhibits extreme asymmetry in the wave impedances for oppositely bound waves. Reflection coefficients
from a slab constructed from this material differ by sign for illumination from the opposite sides. It
was found that the rate in which ϵ and µ tend to zero is in most cases a factor which determines the
electromagnetic response of the composite.
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