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Abstract 
The goal of this paper is to present a computational scheme to accurately and efficiently character-
ize the interactions between optical waves and clusters of metamaterials comprising of plasmonic 
nanorod antennas. The clusters studied herein are two-dimensional periodic arrays, disordered fi-
nite arrays, and Fibonacci quasi-lattices. To efficiently model the complex structure we take ad-
vantage of Characteristic Basis Function Method (CBFM) in conjunction with Macro Basis Func-
tions. The proposed computational scheme achieves speed and memory performances that are 
considerably superior to that of the conventional approaches (orders of magnitude improvement). 
Novel physics are demonstrated. 

 
1. Introduction 

Metamaterials comprising of clusters of plasmonic nanorod antennas demonstrate wide range of appli-
cations in photonics, such as energy engineering in thin film solar cells [1, 2]. Two-dimensional Fibo-
nacci quasi-lattice of plasmonic nanoantennas is an example of Deterministic Aperiodic (DA) arrays 
which have recently attracted a considerable interest due to their unique capability to robustly enhance 
and localize electromagnetic fields at multiple frequencies within engineered optical chips for nano-
plasmonic applications [3]. Solving an array of plasmonic nanorods comprising of dispersive and 
negative-permittivity materials by using conventional EM simulation packages are often inaccurate or 
highly time- and memory-consuming because of the fine meshing due to the thin cross-section and 
that such large cluster of nanorods needs a lot of unknowns rendering the problem computationally 
intensive. The Characteristic Basis Function Method (CBFM) [4] has been found to be computation-
ally efficient, and typically orders of magnitude faster than alternate approaches for analyzing array-
type problems. The CBFM in conjunction with the concept of progressively expanding rings along 
with Parseval's theorem is used to derive closed-form expressions for the reflection and transmission 
coefficients for a periodic infinite array of plasmonic nanorod antennas illuminated by an obliquely 
incident plane wave. The effect of small random rotation around the centroid of the nanorods, an un-
controllable disorder, is studied. The formulation is also employed to investigate the electromagnetic 
response of the Fibonacci plasmonic quasi-lattice comprising of two different nanorods with two dif-
ferent lengths to provide multi/wide band characteristics. 
 
2. Periodic and Non-Periodic Clusters of Nanoantennas 

The unit cell of array structure is constructed from a plasmonic nanorod as shown in Fig. 1(a). It com-
prises silver with Drude material of  )(/2

dprr jffff   , where fp and fd are plasma and damping 
frequencies. To provide a fast and efficient analysis for array configuration one would need a sophisti-
cated approach for nanorod modeling. By discretizing the polarized current using only a few piecewise 
sinusoidal Macro Basis Functions (MBFs), as depicted in Fig. 1(b), and by employing Galerkin testing 
on the surface of the nanorod, one can derive an accurate, fast and singularity free computational para-
digm [5]. For the silver nanorod of length L=150 nm and radius a=7.5 nm, the magnitude and the 
phase of the polarization current at the resonance frequency f=260 THz computed by MBF technique 
are shown in Figs. 1(c-d). It illustrates the MBF technique converges by 5 MBFs, i.e., 5×5 matrix 
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equation. This will allow an almost 3-orders of improvement in speed in compared to traditional 
methods. (MBF method takes 5 seconds whereas FDTD takes 5 hours on an Intel Core(TM)2 Duo at 
2.2 GHz CPU frequency with 4.00 GB RAM). 

 

 

 

                                                      

                                                                                          

 

 

 

 
 
Let us now consider the array structure illuminated by an arbitrarily incident plane wave, as illustrated 
in Fig. 2(a). To solve the scattering problem by CBFM the first step is to find the CBFs (which are 
high level and entire domain BFs) for the single nanorod in the unit-cell. The CBFs are calculated via 
a Singular Value Decomposition (SVD) procedure applied to the previously obtained MBFs, to reduce 
the number of unknowns further, for the isolated element (a nanorod) that are derived by using a num-
ber of incident fields with different wave vectors and polarizations. Next, we follow a procedure that 
begins by simulating a relatively small-size truncated array and derive a small-size matrix equation by 
using Galerkin’s testing on the central element. Furthermore, we take advantage of the fact that the 
shape of the macro-CBF, comprising of a linear combination of the CBFs, remains essentially un-
changed and its level only fluctuates as we increase the number of rings (see Figs. 2(b-d)). To deter-
mine the level of the macro-CBF, we take advantage of the rapid convergence of the Galerkin inner 
product when performed in the spectral domain by using the Parseval theorem. We obtain closed-form 
formulas for the reflection and transmission coefficients, as depicted in Fig. 2(e), by determining the 
contribution of the visible Floquet mode component of the scattered field in the spectral domain [6]. 
The more closer we get to grazing angle the less transmission is obtained. The loss of the plasmonic 
material also absorbs some part of the incoming wave. It must be mentioned that analysing such struc-
ture is a challenging task (due to long aspect ratio of the nanoantenna and its frequency dispersive ma-
terial). The computational speed improvement using our model in compared to FDTD for normal and 
oblique incidence is about 2 and 4 orders of magnitude, respectively, on an Intel Core(TM)2 Duo at 
2.2 GHz CPU frequency with 4.00 GB RAM, for 80 frequency samples. 
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Fig. 1: (a) A plasmonic nanorod illuminated by an oblique planewave, (b) Discritization of the polariza-
tion current, (c) Magnitude and (d) Phase of the polarization for φ=75◦ and f=260 THz 

Fig. 2: (a) Array illuminated by an oblique wave, (b) Ring definition, (c) Magnitude and (d) Phase of the  
macro-CBF versus ring index and length of the nanorod, (e) Reflection and transmission coefficient for 
three different values of θ =25˚, 55˚, and 85˚. 
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We are now in the position to successfully solve a non-periodic array of plasmonic antennas. This has 
great benefit as novel combinations of resonant elements (not in a periodic fashion) can open up 
unique opportunities [7]. Further one is always interested to explore the effect of disorder in a fabrica-
tion. Towards this the performances of finite disordered array and Fibonacci quasi-lattice of nanorods 
are explored. For the disordered array, we consider a 15×15 array with a random disorder in which 
each of the nanorods is randomly tilted around its centroid. The tilted angle between the direction of 
each of the nanorods and the y-axis varies randomly between ±30º. For the Fibonacci a 13×13 array of 
order 6 as depicted in Fig. 3(a) is used (F6=ABAABABAABAAB, where A and B, are  two plasmonic 
nanorods with the same radius but different lengths). We design two plasmonic nanorods A and B, to 
have the resonant frequencies at fA =260 THz and fB =1.05× fA =273 THz. The CBFM is applied to find 
the frequency response (see Fig. 3(b)). Figure 3(c) illustrates the performance for the periodic and dis-
ordered finite arrays (15×15), and the 13×13 Fibonacci quasi-lattice. We also present the results for 
the infinite periodic array. For the Fibonacci array, the frequency response can be described as a blend 
of two resonant response illustrated in Fig. 3(b). Physically if we bring the elements closer to each 
other, the two resonant frequencies merge to each other and an optimized design with broadband char-
acteristic can be achieved. The modeling of the proposed large arrays takes about 6 min/40 frequency 
samples on the machine Alienware i7-3.47 GHz CPU with 8.00 GB RAM over the entire frequency 
band (while it should take days to solve such large finite array using traditional methods). 
 
 

 

 

 

 
 

 

 
 

3. Conclusion 

We demonstrate a fast and powerful computational model for successful characterization of large ar-
rays of plasmonic nanorods antennas. This is a physics-based model where one unit cell of the meta-
material is analyzed utilizing only few basis functions. Orders of magnitude improvements in speed 
and memory are achieved. The physics of periodic and non-periodic configurations are studied.  
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Fig. 3: (a) 13×13 Fibonacci Array, (b) Scattering performance of the A and B nanorods, (c) Optical perform-
ance of finite periodic, disordered, infinite and Fibonacci arrays. 
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