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above, we point out, in connection with this curve, that the characteristic scale
for changes in all the times in this region is found to be T, rather than &g, as a
result of the Pauli exclusion principle.

For e — . > T, the region of small-angle scattering and that of spontaneous
transitions overlap, and eqgs. (4.75), (4.76) and (4.77) are transformed into egs.
(4.72), (4.74) and (4.73), respectively. This can be confirmed by means of the
following asymptotic forms:

2n+1_1
%+(0):?F(H+l) §(n+1), (479)
xn+1
Zi(x)=n+l for x > 1, (4.80)
F(x)=21-2"""I'(n+1) {(n) x forx<l. (4.81)

Here {(x) is the {-function.

Now we can follow the way in which the scattering changes as the electron
cools if the temperature is low enough, i.e. T < hks. Aslong as € — e > 2hk s,
the predominant process is spontaneous phonon emission, on which, more-
over, the Pauli exclusion principle imposes no restrictions. Since in this energy
range the energy of the electron changes only slightly (because ¢ — ep <€),
the same set of phonons is emitted, independently of ¢ — e, and therefore 7,
7, and Q are independent of ¢ — ¢.. When ¢ — ¢ becomes smaller than 2 Ak s,
the Pauli exclusion principle begins to restrict emission, and the rate of
scattering drops. This decrease in scattering continues until ¢ — e becomes
equal to T. In the region with ¢ — e < 7, the scattering time depends only
weakly on energy, because scattering is by phonons with g ~ ¢, indepen-
dently of the value of & — eg.

4.5. Fluctuation—dissipation theorem for quasi-elastic scattering

In order to prove eq. (4.40), we introduce the scattering probability W (e — ¢),
obtained from W, _,. by averaging over the constant-energy surfaces on
which k and k’ lie. According to eq. (3.8), the phonon emission probability
can be represented as

WH(e—se—hw)=(N,+1)w(e, w). (4.82)

It follows, then, from the principle of detailed balance, eq. (2.10), that the
absorption probability has the form

W (e—et+hw)=Nwl(e+ho, o). (4.83)
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Here N is the Planck function and w is the probability of spontaneous
emission. We also introduce the weighted quantities

wie, w)=g(e) w(e, w) gle— hw), (4.84)

O(e)=g(e) 0(e) and D(e) =g(e) D(e). (4.85)
Then eq. (4.40) assumes the simpler form

O(e) — 0°(e) = 07(e) = —3D(e) /3, (4.86)
with

O(e) = /Owd(hw) Ro[(N,+ D)w(e, w) — Nw(e+ ho, )],  (4.87)

D(e) = %/Owd(hw) (hw)z[(Nw+ Dw(e, w)+Nw(e+ ho, ©)].
(4.88)

In calculating D we can disregard the difference between Ww(e, ) and
Ww(e + hw, w), and rewrite the expression within the brackets in the form
(2N, + D)Ww(e, w). Differentiating with respect to e, we can put

J . 1. N
-a—ew(s, w)=ﬁ[w(£+hw, w)—w(e, w)]. (4.89)

After this, as can be readily seen, we have
O(e) + %D(s) = /ood(hw) holw(e, o) +Ww(e+ hw, )] (4.90)
0

Here again we can neglect the difference between the two terms in the
brackets, after which the right-hand side transforms to Q°(¢), which is what
proves eq. (4.86).

After substituting eq. (4.40) into eq. (2.93), it becomes clear that the
dynamic friction coefficient A(¢), included in the expression for the current
along the energy axis, eq. (2.92), is, in the case of quasi-elastic scattering by a
phonon thermal bath, simply the spontaneous loss rate. Thus

A(e) = Q%e). (4.91)

On the other hand, if we also make use of eq. (2.95), the total loss rate can be
expressed in terms of the diffusion coefficient:

0(e) = ~D(e) ptnle /7g(e) D(e)]. (4.92)

This relationship between the relaxation and fluctuation characteristics remind
one of the fluctuation—dissipation theorem (the Einstein relation and the
Nyquist theorem).



