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The temperature dependences of the mean free paths for electrons and holes in antimony are meas-ured sepa.rately on the basis of the amplitudes o] the radio frequency size effect lines. In both casesthe temperature-dependent part of the path was found io be proportional to T-2, the proportionality
coefflcient for holes beingthree times greater tlan that for electrons. It is shown ttlat if the Fermisurface resembles a long, narrow cylinder, the term quadratic with respect to temperature in thecarrier scattering probability may be ascribed to inteiaction between electrons and phonons and thatit is precisely this case which is encountered in bismuth and antimony. The magnitudes of the deforma-tion potentials in antimony are estimated for both electrons ancr holes.

SO tr" there is rather litile information concernine the
connection between the cross section for scattering-of
electrons in a metal and their position on the Fermi
surface. Kinetic processes widely used for the investi_
gation of electron relana.tion times, such as electric or
thermal conductivity, are determined by quantities aver_
aged over the entire Fermi surface. At the same time.
there already exist methods for separating and investi_
gating individual groups of carriers in a metal. Such
methods include, in particular, the measurement of tlte
amplitude of the lines of the radio frequency size effect
(SE).t1,21 The SE line is formed by electrons located in
the vicinity of a definite extremal section of the Fermi
surface. Therefore the line amplitude is determined bv
the probabil ity of scattering of precisely these'eiec_ 

a

trons.
The purpose of the experiments described here was

to compare t}te cross sections for the scattering of the
carriers of both types by phonons, using one sample of
antimony (in one experiment), by measuring the temper_
ature dependence of the amplitude of the SE lines from
the electronic and hole parts cf the Fermi surface.

EXPERIMENT

An antimony sample in the form of a disk of thick-
ness d = 0.32 mm and diameter 10 mm was grown from
the melt in a dismountable quartz mold. The initial ma_
terial was antimony with a resistance ratio
Proom/p4.t 6= 2700. The angles between the normal
tothe plane of the sample and the axes C, and C. were
46'10' and, 44oZO, . The experiments werjperformed in
the temperature range from 1.1? to 4.2"K. The ampli_
tudes of the SE lines were measured on the plots of the
derivatives, with respect to ttre magnetic field, of the
imaginary part of the surface impedance, OX/'OH or
azx/AHz, at a frequency L2.d UHz. We used the usual
modulation,pr oc edure for the meas ur ements _see, for
example, t1l. To record the second derivative, the de_
tecting part of the apparatus was tuned to a frequency
equal to double the modulation frequency,

A considerable line width ( tH/Hx 6/dx lSVo: 6_

depth of skin layer) made it necessary to take into ac_
count in the data reduction the monotonic part of the
function AX/AH. There was no monotonic part in ttre
second derivative, but this did not lead to an appreciable
increase of the measurement accuracy. Sample plots
are shown in Fig. 1.

As is well knownrtsl the Fermi surface of antimony
consists of three electron and six hole surfaces of
nearly-ellipsoidal shape. The number of hole surfaces
that cannot be made congruent by parallel transfers in
k-space is only 3, and each pair of surfaces capable of
being made congruent gives one SE line.

We observed the SE lines from the three electron
surfaces and two pairs of hole surh.ces. Within the lim_
its of the experimental accuracy, the dimensions which
we succeeded in measuring, and the slopes of ttre sur_
faces relative to the crystallographic axes, fully coin_
cide with those indicated in ts I The deviations of the
projections of the Fermi surfaces on the plane of the
sample from ellipticity, while noticeable (especiallv for
the hole surfaces), were at the borderlin"'of th" ,""o_
racy of our experiments. To measure these deviations,
we propose to carry out in the friture a special series of
experiments on sampl.es with different orientations. For
the time bei.ng, in discussing all the e:<perimental meas_

FIG. l. Sample plots of SE lines for antimonv
The lef t  l ine in the lower p lots perta ins to the
hole ellipsoid, for which 0 = 30', and the right
one to the electronic ellipsoid, which lies in the
plane of the sample (f = 37"). The arrows show
the value chosen for the line amplitude in this
plot.
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urements of the free paths, we used a quadratic model
with the following values of the principal semiaxes of
the ellipsoids and cyclotron masses at the minimal
cross sect ionsts l  (k  is  in  cm-r) :

V .  F .  G A N T M A K H E R  a n d  V .  T .  D O L G O P O L O V

lo-7 h ^f ; in l*o
r.4 0.069

2.7 0.08,1

To measure the mean free path I with the aid of the
SE it is necessary to know the path length A of the elec-
tron from one surface of ttle plate to the other. In the
general case A is a rather complicated function of the
angles, which may, furthermore, depend strongly on
small deviations of the Fermi surface from ellipticity.
If, however, the magnetic field H and the major semi-
axis of the ellipsoid lq lie in the plane of the sample,
then, recognizing that for electrons and holes k, n: k,
( kr, we can use the formula Iy = nd/Z in a Large inter-
val of angles { between H and k . This formula is valid
up to those values of { for which we can neglect the de-
viation of the Fermi surface from cylindrical shape.
For a circular cylinder whose axis makes an angle {r
with the surface of the metal we have Iy= nd/Z cos 4,,
regardless of the value of the angle g ({+ r/2). In this
connection, all tie main measurements were performed
on one of the electron ellipsoids and on one of the pairs
of hole ell ipsoids, for which i/ 5 5".

If the electron traverses ttre path A between the two
sides of the plate only once, then the line amplitude is
A - exp -It /l and

l n .4  (2 , ;  :  qsn51 
A nd  r  |  7n  r- T : c o n s t - r ( ; - u )  ( 1 )

The measurement results processed in accordance with
this formuLa gave for the function la =(l-t - lft;-t
= BT-n the values (see Fig. 2)

t , e l : 0 .221 r "  I cm]  z ,h :0 .6a / r '  I cm]  (2 )

(here and throughout T is in degrees K and lo is the
mean free path at T = 0). For the hole ellipsoid, the
value of F was measured at 12 points in the angle in-
terval from 20 to 70". The scatter of the values of 6
was limited to +7V0. For the electron eltipsoid, the an-
gle interval was 35 o s 4 = 80" and the scatter xL2Vo. It
was impossible to perform measurements at smaller
angles {, owing to the overLap of the lines from differ-
ent ellipsoids. (Even the plots of Fig. 1 show a partial
overlap, but measurements of A(T) are still possible if
one uses for A the dimensions indicated in the figure by
arrows.)
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FIG. 2. Reduced amplitude of the SE line from the hole ellipsoid
(in logarithmic scale) as a function of T (points +), T2 (points O), and
T3 (points O). We see that the filled points fit the straight line well. Its
slope gives the value of 0, see ( 1 ).

Since the electron can, generally speaking, execute
several revolutions on the trajectory, it is more accu-
rate to write in place of (1) the sum

A(r) :  C ) ' ,  e- 'nr '  :  C(e" / ' -  1) - '  :  Cf \exp(ndT"12p)-  1 l - ' ,  (3)
='i

where C = A(0) ( ?i = t) and 4 = exp (rd/21). From (3)
we obtain the expression

n l c r r d t d
\ A ( 1 )  +  1 ) :  

%  + i f l - ' r ^ ,  ( 4 )

in which, unlike in (1), the logarithm contains the pa-
rameter C, defined by the value of lo. A reduction of
the experimental data by means of formula (4), even
with C corresponding to lo = 0.3 mmr did not lead to a
change of the erponent n. The coefficient B increased
at this value of C by L\Vo. Larger values of lo have low
probability, since no SE was observed on samples
0.5 mm thick, made of the same material, down to the
Iowest temperatures.

DISCUSSION

Since the experimentally obtained degree T2 is char-
acteristic of the contribution of electron-electron scat-
tering, we first make some estimates of the protrabitity
of the electron-electron coll ision.

To this end we use the formula for the differential
cross seetion for the scattering of an electron from the
state k to the state k' by a screened potential in the
form U(r) =(e2/rcr) exp -gr (r is the static dielectric
constant and g-1 the Debye radiusl see t4l Ch. 6):

t  2mc '  t  2
o" : \+) ( lk _ k,l, _r s")-".

If it is recognized that the Fermi wave vector is kp: g
both for an ordinary metal (kp = g= l/a, where a is
the interatomic distance) and for a semimetal (in bis-
muth kp x gx L00/a, and in antimony kp r g* 10/a),
then ttte total scattering cross section at k = kp is ex-
pressed in terms of the Fermi energy ep:

I  m e ' \ '  I  e ' \ '
o : 16n \f i  )  k,t+*, '+ s') l- '  -  \ ;  ) .  (5)

Multiplying by the number of soatterers, taking into ac-
count the limitations imposed by the Pauli principle on
tle possible collisions in the electron ga.s, we obtain
for the mean free path lss

. - t  I  t d N " t '  w r t r , l V  \ - ' l  c o  \ t , - .t . . ' = a  * l ; - l  G B r ) ' ,  t , " = N " ( + )  ( + l  ( * )  ( 6 )
1 r e \  o E  l  r - r F  

-  
\  e ' l  \  d e  l  , , \  k } l  l

(Ne is the total number of electrons per unit volume and
kg is Boltzmann's constant),

For antimony, Ne = 10m cm-3, 0Nu/|e
r  1033 erg-r  cm-3, ts t  rc  r  100, t61 and lss x  l0 fT2.  We
see therefore that the coefficient of T-2 exceeds by 10
times the corresponding value from our measurements
of 11. Furthermore, as is known from calculations for
sodium,tTJ the estimate obtained for lss from (6) is
underestimated by several times because of numerical
factors. The entire further discussion will therefore
be devoted to electron-phonon interaction.

For an isotropic electron dispersion law, the value
of lT measured with the aid of the SE and determined

l 0  7 t r r

Holes: 0.42
Electrons: 0.42

io- i  k2

0.45

0.50
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by the scattering of the electrons by the phonons should
be proportional to

I , aT ' -u  f o t  q ' l k , 46 ld< '<1 ,  (7 )

l , a T - "  f o r  6 / d { Q ,  1 k " 4 1  ( 8 )

(qt = ksT/hs, s is the speed of sound; depending on
the type of the SE, the inequalities (7) and (8) may con-
tain other expressions in lieu of 0/d--for details see
t r l ) ,

I ,  a  T- t  for  q,  1k"71 (9)

(the high-temperature case; under these conditions,
however, the SE is no Ionger observed).

In (8) and (9), the measured value of 11 is the true
path length traversed by the electron between two colli-
sions with phonons (If =le.Dh). Of course, the experi-
mentally obtained relation 

'l'a 
a l-z can be regarded

as a transition from (B) to (9), since at 4" K q1 = 0.3
x 10? cm-r in antimony (compa.re with the values of kr
listed in ttre table above). However, as indicated intsl ,
in the case of a sharply anisotropic electron dispersion
Law the relation le, ph - T-2 should be obtained in a
definite rather broad temperature interval.

lndeed, we shall use a model in which the probability
of scattering of an electron with a wave vector K is
given by the expression

v  L '  r .

T :  E f rM ,  J  c [ zo ( t  -  / *+o )d (e "  t  hqs  -  ex+e )  
( 10 )

*  (zo *  t )  ( l  -  l " - , )6(e *  -  hqs -  e"-) ld 'q.

Here A is tJre deformation potential, M the mass of the
lattice ions, N the number of atoms per unit volume' v
the electron velocity, and nn and f6 +q are the occu-

pation numbers for the phonons and electrons; the two
terms in the square brackets take into account.redpec-
tively the absorption and production of the phonon, the
integration is carried out over all wave vectors q, and
the 0 function ensures satisfaction of the conservation
Iaws (see t4l, Ch. 5). The deformation potential, gen-
erally speaking, is a tensor quantity: ai5(k). In our ex-

periments, however, we measured the total scattering
of the electrons by phonons of all polarizations, and the
effect of the action of different phonons was automatical-
ly averaged. It is therefore natural to reprd A as a
scalar quantity and to take it outside the integral sign in
(10). The averaging of A over k occurs along the orbit
of the electron i.n k-space, and therefore, naturally'
ae l+  Ah .

Let the Fermi surface be an infinite ci-rcular cylin-
der of radius K and, as always at low temperatures,
Iet the conditions e (K) ) hqs and Vp ) s hold. Owing
to the latter inequalities, the distance Ak between two
equipotential surfaces € and € +hqs in k-space is Ak
=qs/v (( q, and it can be assumed that the electron re-
mains after scattering on the same surface. The regicn
of integration in q-space in (10) reduces to a cylinder of
the same radius K, passing through the origin, with an
axis parallel to the Fermi-cylinder axis. lndeed, the
argument of the 0 functions is 

,.
e* t f iqs-  6"*e:  t  h ts- f i (a f  i2Kqlcosq)  (11)

h'Kq, t q' \'  - \ z x  *  " o " q  
) ,

F R E E  P A T H S  I N  A N T I M O N Y l2l7

where q, is that component of the vector q which is
perpendicular to the cylinder axis, and E is the angle
between K and qt. Equating the expression in the pa-
rentheses in (11) to zero, we obtain precisely the equa-
tion of a cylinder.

Expression (10) in terms of the function f6 1q de-

pends on the energy of the scattered electron, so that
this expression must be averaged over the initial values
of the electron energ'y along the normal to the Fermi
surface- It is necessary to bear in mind here that the
SE lines are formed only by the nonequilibrium elec-
trons determined by the increment Af to the equilib-
rium distribution function f(01 The value of Af is pro-
portional, as is well known, to the derivative afo'/ae;
the proportionality coefficient, which can be regarded
as a constant near the Fermi surface during the course
of integration along the normal to this surface, drops
out upon normalization, so that it is necessary to make
in (10) the substitution

r-1.*,*-j ffo-l i?,)a..
The expression in the square brackets in (10) tlen goes
over into

Ioo( - luo) I @" + l) (l - l"-") I + xe' (e" - l)-2,
r :hqs/ksT,

and (10) is transformed into

u  :  L '  
l k s T \ ' f  

a v  i  r ; e ' d t

t",,0 2n,NMush \ fi, , "J 7;4"y )'llr'- ak- tY $2)

y " : 2 Q  l T ,

where Q =hKs/kg is the characteristic temperature,
which replaces in this problem the Debye tempera-
ture @.

If the cylinder is sufficiently thin so that

r>Q,

then we obtain from (12)

(  13)

*:,"#(# ) (#)': #fr#"(;f (14)
(q6 = On"ll is ttre Debye wave r/ector). It is precisely
this case which is reatrized in bismuth for electrons.tsl
In the opposite limiting case T ( Q' we obtain the
same formula as for the Fermi sphere:

*:snt',#(+)':ry#(+)
( ( 3 ) : 1 . 2 0 . (15 )

For the intermediate region of temperatures' the inte-
gral in (12) was evaluated with a computer (see Fig. 3).

Antimony falls precisely in the intermediate region.
In order for the experimental points to fall in the region

I q T-z on the curve of Fig. 3 (the right-hand side of
the curve, corresponding to T/Q > 1), it would be nec-
essary to assume that the average sotrnd velocity is
s 5 105cm,/sec. This contradicts the experimental
data.ts r It is more correct to assume the average value
to be s rlv 2 x 105 cmfsec. In this connection, we can
note the following.

In the region T nv Q, a change takes place in the char-
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FIG. 3. The double integral I in expression (12) as a function of the
parameter TiQ. The vertical dashed lines show the measurement regions
for antimony and bismuth, respectively. The scale corresponds for anti-
mcny to the sound velocity s = 2 X | 05 cm/sec, and for bismuth to s =
1.5 X 105 cm/sec.

acter of the scattering: a major role is assumed by col-
Iisions tlnt change ttle direction of the electron momen-
tum through angles y -1. For such collisions, the ma-
trix element of the transition in (10) should contain one
more factor-a certain function of the scattering angle
G(y) (see r+:, Ch. 5). This function does not changJthe
power-law relations in the asymptotic formulas (14)
and (15). For T ((Q, the function G(Z =0) = 1 by defi-
nition, and for T >> Q the scattering is isotropic, so
that the contribution of G reduces to the appearance of
some additional numerical factor. But in the region
T n; Q the function G(y) is quite capable of extending
the quadratic dependence into the region of low temper-
atures.

Inasmuch as under the condition T i,Q each act of
scattering by a phonon leads to a change of the electron
mornentum by a large angle, formula (14) can be used
directly to calculate the qr.rantity /o which enters in the
electric resistivity of semimetals'in the corresponding
temperature range. Indeed, in tro, ul a quadratic de-
pendence of the temperature-dependent part of tl-r.e elec-
tric resistivity of antimony on T was observecl in the
region from 1.5'K to hydrogen temperatures.

Let us note one peculiarity of electron-phonon scat-
tering. As seen from formulas (12), (14), and (lb), l^ nr
- v2. Since the velocity^along the principal directiorid'"
of the ellipsoid is v2 = ri - ki', the mean free patl
ls,ph for electrons located near the major semiaxes
turns out to be much smaller than near the minor ones.
For eleetrons in bismuth, for enample, where

kmax/kmin nv 14, the ratio I ?,X\trflif1, reacnes 200.
In antimony this ratio is approximately 30 for electrons
and 10 for holes. (These, of course, are only estimates,
since no account was taken of either the anisotropy of
the phonon spectrum or of the dependence of the integra-
tion region in (12) on k.) The values of /s.p5 measured
by us for antimony, and also in 16l for ele'c^trons in bis-
muth, pertain to carriers with minimum values of the
momentum within the limits of the given ellipsoid, i.e.,

- maxclose to / e, ph.
Little is known concerning the anisotropy of lo.

From numerical estimates for the averaged value of lo
it follows that near the points lkl = kmax at helium tem-
peratures tfie scattering by phonons prevails over the
impurity scattering, and the resultant mean free pa.th

I = /f{ir << lo. This can probably exptain why in such
experifrrents on semi metals as the de Haas-van Alphen

a n d  V .  T .  D O L G O P O L O V

effect, cyclotron resonance, or the size effect it is very
difficult to observe the sections that pass through the
major semiaxes of ttte Fermi ellipsoids.

Thus, it is quite probable that at helium tempera-
tures lo ( lerph for some carriers and lo ) ls,ph for
others. Under these conditions, strictly speaking, the
electric resistivity cannot be subdivided into residual
and ideal components, since the Matthiessen rule does
not hold. It is therefore very difficult to compare our
coefficients in (2) with the results of measurements of
the electric resistance, and no great significance should
be attached to the rather good agreement between our
coefficients in (2) and t}te eoefficient obtained from the
data of tr01 uJ 1ro* the quadratic term prf in the re-
sistance in accordance with the formula Ip =hK/Nee,pT.

The quantities ls, ph measured by us make it possi-
ble to calculate the constant A. Putting in (1a) [l[tl
= ,6.7 g/cm3, s  = 2 x 105 cm,/sec,  ve l  = 5.8 x10?cm/sec,
vn = 6.? x 10?cm/sec,  and K =4.4 x106 cm-r ,  we ob-
tain

lA"r l  :  2 .9 ev,  lAhl  :  1 .g ev. (16 )

These values can be compared, first, with nleasure-
ments of the deformation potential as determined from
the amplitude of the quantum oscillations of sound ab-
sorption:t12J by averaging the squares of the diagonal
elements of the tensor Aij, we obtain for electrons
A^r4.1 eV,while all that is known for holes is thatthe
components of the tensor are smaller than those for
electrons. Second, we note that the defqrmati.on poten-
tial obtained under the assumption ,oeli = lahl = a
from measurements of the thermal conductivity of anti-
mony amounts to 1.8 "Y.tB l

Violation of condition (13) makes it necessary to con-
sider the experimental values (16) as approximate. How-
ever, in view of the fact that for electrons and holes in
antimony the transverse dimensions of the ellipsoids
are practically the same, and the difference between the
dimensions of the long semiaxes in theinvestigated tem-
perature interval is negligible, since kgT/hs ( k' the
"geometric factor" connected with the integration is the
same for electrons and holes..Therefore the inaccuracy
of formula (14) and the uncertainty in the choice of s
should not aJfect the ratio ltell/ 1ah1 = f.S.

This ratio permits another'comparison with an inde-
pendent experiment. According to ttnl, hydrostatic com-
pression increases the number of carriers: ANe/Ne
xlVo per kbar. Assuming for estimating purposes

^ d N "  3  6 h _ 6 e lo  
N " : T  E  '

where E is the band overlap and B is the bulk modulus
of elasticity (B nv.400 kbar), we obtain either AeI
= -0.3 eV and An = 0.2 eV (the extrema shift in oppo.-
site directions at decreasing specific volume), or Ael
= -1.6 eV and Ah = -1.0s eV (both extrema shift down-
ward). The second assumption agrees much better with
(16 ) .

A similar analysis can also be carried out with re-
spect to the results of t8 I for bismuth. Although the
lss calculated from (6) differs much less from the mean
free path 11 measured in 18 l for electrons, there is
every reason for assuming that in bismuth the tempera-

t t  2  3 q V , " K  t t  z  3 t \ t . " t \
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ture-dependent scattering is determined by electron-
phonon collisions. This is confirmed, in particular, by
the character of the dependence of the coefficient of the

temperature-dependent part of the electric resistivity
on Ut" carrier density in bismuth-antimony alloys . t rs l

The data of tsl reduced in accordance with formuta (14)

lead to aRl = Z.O eV' whereas the diagorpl elements of
the tensor"'ai5 for bismuthrrel yield a[!. = 3.8 eV.

The authors are grateful to E. M. Rodina and R. R.
Ponomareva for help with the computer calculations and
to S. I. Za\tsev for taking part in the numerical reduc-
tion of the experimental results.
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