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Abstract

The review is devoted to low temperature methods of the study of electron
scattering on phonons in metals. The basic emphasis is put on those experiments
or those aspects of experiments which are governed by or can yield information
about the electron—phonon scattering anisotropy, ie the dependence of scattering
probability on the electron position on the fermi surface.
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1. Introduction

Over the last twenty years the work of metal physicists has centred on the study
of the effect of the crystal lattice on electronic spectra. A wide field of study
developed and even acquired a special name—fermiology. The development of this
field has been outstandingly successful. The fermi surfaces of most metals have now
been studied in detail and are known very accurately. For example, the deviations
from sphericity of the fermi surface of sodium, which are less than 0-19,, have been
measured and plotted on a stereographic projection. In parallel with this, the
genesis of the electronic spectrum has also become clear, at least for non-transition
metals, as a result of the development of the theory of pseudopotentials. The
successes of fermiology have to a large extent been summarized in the book The
Physics of Metals, edited by Ziman (1969).

The fantastic shapes of fermi surfaces, which have sometimes excited the
admiration of artists and sculptors, are determined basically by the fact that the
electron moves in the periodic potential of the crystal lattice. However, this is by
no means the only effect on the electrons of the ideal crystal lattice. Electrons also
interact with lattice vibrations, ie phonons, and the electron—phonon interaction
determines many of the basic properties of metals. Perhaps the most important is
superconductivity, which is due to an indirect electron—electron interaction which
takes place through phonons. Interactions with phonons also change the effective
mass of an electron; as a rule electrons which are dressed in a ‘phonon cloud’
become heavier. For example, the effective mass in sodium is m* = 1-24m,, where
my is the mass of a free electron, and in lead and mercury electrons become heavier
by a factor of 25 as a result of interaction with phonons. Another aspect of this
interaction, the absorption of phonons by electrons, is closely related to ultrasonic
attenuation in metals, since sound is a directed flux of these phonons. At the same
time the scattering of electrons by phonons limits the mean free path of current
carriers and this affects all the kinetic properties of metals.

All these effects are now intensively studied in many laboratories around the
world. Indeed, it is no exaggeration to say that this field is the centre of gravity of
research in the physics of metals. Moreover, this research now has a qualitatively
new foundation, based on known fermi surfaces and known phonon spectra.

The present review is devoted to one aspect of this field. We shall discuss the
experimental methods for the study of the scattering of electrons by phonons and
the experimental results at present available. The main emphasis will be placed on
phenomena which are due to, or can give information on, the anisotropy of electron—
phonon scattering and its dependence on the position of the electron on the fermi
surface. In general, studies of scattering make use of methods developed in fermi-
ology which pick out particular groups of conduction electrons (cyclotron resonance,
size effects, ultrasonic attenuation in a magnetic field, etc). However, the desire to
obtain from ‘old’ methods new information, not about the spectrum of electrons
but about their lifetimes, makes one re-examine critically the possibilities of these
methods.
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2. Scattering probability

2.1. General expressions

2.1.1. Conservation laws and the matrix element. The scattering of electrons by
phonons is described in the language of particle collisions; an electron at some point
in its trajectory either absorbs or emits a phonon (figure 1). This process must
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Figure 1. Schematic representation of (a) absorption and (b) emission of a phonon by an
electron with wave vector k.

obey the conservation laws for energy
E,=E.+e¢ (D
and quasimomentum

K =k+q+K. (2)

(Ey, Ey R, k' are respectively the energies and wave vectors of the electron before
and after the scattering; q and e are the wave vector and energy of the phonon;
K is any reciprocal lattice vector; the upper sign corresponds to phonon absorption
and the lower to phonon emission.) The probability v,, that scattering by a phonon
with wave vector q satisfying (1) and (2) in fact takes place, depends on the square
of the interaction matrix element M?(k, ), on the number of phonons ¢, in state ¢
and on the probability that the electron state with momentum k’ is empty:

i) = M )| @ F5.) (B~ By + 0. (7:7) 8Be—Eer 0| )

(here @, = (1—fp,.); P_=(¢.+1)(1—fr_.); fr is the electron distribution
function; the 8-functions ensure conservation of energy and the temperature T is
expressed in ergs, ie Boltzmann’s constant is taken as unity). The total probability
for the scattering of an electron by phonons is given by

(k) = s [ va) g 4)

The quantity v(k) is also called the total collision frequency of an electron with
phonons.

Since we are concerned with low temperatures, we shall deal below only with
acoustic phonons. We use a model in which M?(k, q) has the form (Ziman 1960,
chap 5)

M3k, q) = FigA?[2us (5)
where A is the deformation potential; s the velocity of sound; and u is the density
of the crystal. The use of (5) presupposes a whole series of assumptions and sim-
plifications. The most 1mportant of these is that the deformation potential is really
a tensor A and appears in the matrix element in the form A (Ou;0x;) ~ (eAq),
where u is the deformation vector and e is the phonon polarization vector (Akhiezer
1938). We replace A by a scalar and simultaneously take some average value of the
velocity of sound s. The factors less than unity, such as the square of the cosine
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of the angle between e and Agq, then drop out of M %(k, q); and also we integrate
only over one of the three acoustic branches, since M2 = 0 for a scalar A and purely
transverse polarizations.

This all shows that one should not attach great significance to the numerical
coefficients in the expressions which are derived below, using this matrix element.
We shall, however, always write out these coefficients because they are useful in
comparisons between different situations.

2.1.2. Region of integration. We now turn to the expression in square brackets in (3).
We shall be concerned only with degenerate fermi systems of electrons with fermi
energies E;> T, with velocities at the fermi surface v = %1V, E, which are much
greater than s, the velocity of sound. This latter condition means that in a collision
with a phonon the electron displacement perpendicular to the constant energy

k-space g-space

K

(@) (6

Figure 2. (@) Fermi surface F(k) = 0 in k space; K is a reciprocal lattice vector. (b) Surfaces
in ¢ space defining the wave vectors of phonons that can be absorbed (1 and 1), or emitted
(2 and 2"), by an electron in state k; ¢, is the minimum wave vector of a phonon which
can be absorbed or emitted by an electron B in an Umklapp process (K#0 in
equation (2) ).

surface Ak, ~ AE/|VE|~ gsfv is much less than the displacement parallel to it
Ak = ¢, and hence it may be considered that the scattered electron remains on the
same constant energy surface, ie that the scattering is elastic. Thus, in the inte-
gration in (4), the &-functions pick out values of ¢ which leave the electron on
practically the same constant energy surface, when it is scattered with either the
absorption or emission of a phonon. Moreover, if some particular value of q
reduces to zero the argument of the first 8-function in (3), then the value —gq
reduces the argument of the second 8-function to zero, since a transition by an
electron from state k to state k' can take place either by the absorption of a phonon
with wave vector q or by the emission of a phonon with wave vector —q. If the
constant energy surface is described by the expression F(k) = 0, then for an electron
with initial wave vector k the first 8-function has zero argument on the surface
F(q+k) =0 in ¢ space (the initial surface, displaced by a vector — k), whilst the
second has zero argument on the surface F(—q+k)=0 (the initial surface,
inverted through the origin, and then displaced by a vector k). These two surfaces
touch at the origin (see figure 2).

If these surfaces intersect the Brillouin zone boundaries, this means that some
of the collisions take place by Umklapp processes (K#0 in (2)). If the Brillouin
zone boundaries do not intersect the surfaces F(+ g+ k) = 0, then we always have
K = 0in (2).

Whether Umklapp processes take place or not is important from two points of
view. First, these collisions are necessary to produce dissipation of the momentum
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of the electron—phonon system. Secondly, by means of Umklapp processes, ie
transitions involving a reciprocal lattice vector (see figure 2), some parts of the
surfaces F(+ g+ k) = 0 can lie much closer to the origin in the phonon-wave vector
space, and this affects the temperature dependence of the quantity »(k). The
temperature T, at which Umklapp processes begin to make a contribution to »(k)
comparable with that from normal processes is given, in order of magnitude, by
T, ~ hig, s, where the meaning of the minimum Umklapp wave vector ¢, for a
given k is clear from figure 2.

Since the phonon spectrum has a centre of symmetry, «(q) = e(—q), the
surfaces of integration over ¢, are identical for the two terms in (3) and we can
write

() = s [0 Mg, By 77 (6)

(2n)2h ) (VE), TT
where d.S, is an element of area of the surface F(g+k)=0;and &, =0, +D_.
Let both distribution functions be initially in equilibrium: ¢, = ¢{* = (¢/—1)7},
where t = ¢/T, and fg = f© = (e*+1)71, where « = (E—E)/T.
We then have
— AO(] _ £O ) Oy = eX(e*+1)(¢!+1)
(Dl(o‘) t) 955 (1 fE+e)+(¢e +1)(1 fE—e (e‘—l)(e“"‘+1)(e"‘+‘+1)' (7)

For an electron which is near the fermi level, within the region of thermal smearing
(Ja|< 1), the equilibrium functions reduce ®,(a, ) to zero for those phonons for
which #> 1. In the first term in @,(a, ) this takes place because the function ¢ is
small for phonons with energies greater than 7 and hence the probability of absorb-
ing these phonons is also small. In the second term the factor (1—f,) reduces to
zero because states with energy E — e are occupied and the electron cannot therefore

emit a phonon with > T.

2.2. Electrons with energy E = E;

It is clear from (6) and (7) that the scattering probability v is a function of the
energy « of the initial electron state. To make clear the dependence of v on tempera-
ture and the shape of the fermi surface, we at first suppose that the electron energy
is exactly equal to the fermi energy: « = 0, so that (7) now becomes

@,(0, 1) = 2ef(e®—1)1. (8)
After expressing M2(k, q) using (5), we examine three particular cases.

2.2.1. A cubic dependence of v(T). Let the wave vector of a thermal phonon be
g~ T/hs <k )

(both here and below k; describes a characteristic dimension of the fermi surface,
which differs for each specific case; in (9) &; is the radius of curvature of the fermi
surface at the point k). If we now introduce a characteristic temperature Q = k¢ hs,
the inequality in (9) can be written as 7< Q. In general there is some temperature
T for each k;, below which the inequality in (9) is satisfied. However, in the tem-
perature range 1-10 K which is most commonly used experimentally, the condition
in (9) is satisfied for k; ~ K and Q = isK = Ty, (the Debye temperature). We shall
therefore refer to (9) as describing a ‘large’ fermi surface.
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By making a series expansion of the surface F(k) = 0 around the point k and
neglecting quadratic terms, we find that the region of integration in (6) is a plane
in ¢ space passing through the origin, with a normal parallel to the gradient of the
fermi surface at the point k, dS, = 27¢gdg and

A2T3 f‘”t%‘dt _7L3) A TS

- = =12, 10
2777134,”47) o €21 S Tl‘*y.s"v’ 6(3) 1-2 ( )

14

It may happen that there is another sheet of the fermi surface near the point k,
at a distance ¢, <gr (see, for example, figure 2, where this sheet is a consequence
of Umklapp processes; it can also be just another part of a multiply-connected fermi
surface). If (9) is also valid for the second part of the surface, we need to add a
second similar expression to (10)

AT3 J‘“’t%‘dt
t

V =
A4 T 2Rt ustoy Jy, €2 —1°

(the subscript 1 on v means that the velocity refers to the second sheet of the fermi
surface). :

We emphasize once again that the simplified form of the matrix element in (5)
can affect only the numerical coefficients in (10) and (11), not the form of the power
law dependence of »(T'). This observation also applies to all the calculations
described below.

ty = hsqy/T (11)

2.2.2. Linear dependence v(T). The opposite limiting case
gr>ke; QLT (12)

(here k; is the maximum possible distance from the point k to another point on the
fermi surface) is appropriate at high temperatures, or at helium temperatures for a
small enough fermi surface k;<(0-05-0-1) K. For all phonons which satisfy (1)
and (2) we have t<1, so that ®,(0,¢) = -1 and

(1= AT [ dS, _mArTw,
A TRt Y VE)y T Zhpst

(ne = (2/(27)*) §(AS/VE) is the density of states at E = Ej).

(13)

2.2.3. Quadratic dependence of v(T). When the electron dispersion law-is highly
anisotropic there is another possibility, which is realized in a number of cases.
Suppose that we have a fermi surface in the form of a long cylinder and we
consider a temperature range for which gy is much greater than the cylinder radius
but much less than its length:

Ryt < gy <Ry (14)

The two-dimensional integral in (6) then becomes the product of two integrals,
along the perimeter of the cylinder and parallel to its axis, and only one of these
depends on 7' (Gantmakher and Dolgopolov 1971); so that

A? dq, Z)2J'°°te‘dt _mTm,A*T?
22 us J (VE), \ks) Jo e¥=1~ 8 hipus

W T) = (15)

where m, = (h?/2m)§ (dk/VE) is the cyclotron mass of a section perpendicular to the
cylinder axis. For a circular cylinder of radius k,; the mass m, = fikys/v.
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Thus the scattering probability can be proportional to the first power of T, or to
T2 or T3, depending on the relative values of g and the fermi surface dimensions.
The experimental observations of these dependences are discussed in §6.

2.3. Hot electrons

We now consider a ‘hot’ electron above the fermi surface and outside the region
of thermal smearing (a«>1), for unperturbed electron and phonon distribution
functions, fi = fi® and ¢, = ¢!9. For such an electron the choice of phonons which
can be emitted is much wider. To take a specific case, let us suppose that the heating
is comparatively small, so that «a <E;/T and the difference between the fermi
surface and the constant energy surface on which the electron lies is negligible.
Naturally, as before, the scattering can be considered as elastic. The equation
F(q+ k) = 0, which determines the region of integration over ¢ in (6), then remains
the same as before.

The function ®,(e,?) within the integral is now nonzero for phonons with
energies £ up to «, and over most of this range, specifically for 1 <# <, ®(o, 2) = 1.

In (9), (12) and (14), which define the ‘geometrically’ various limiting cases,
we now need to replace gp by ¢, = (E— E})/is>¢p. The integrations lead to the
following expressions:

A2
. 3 (G
gkt v= T2 st v(E E:®  (instead of (10)) (16)
) A dS,q .
@G> k>gr: v= S7Ths fﬁF:o o (instead of (13)) (17)
ki<, <ky: m, A* (E—E;)? (instead of (15)) (18)
1t K Jo 2f - V= 477'77”‘“3 f) €a ’

When g, is less than any of the fermi surface dimensions (the cases described
by (16) and (18)), the emission of a single phonon will return the electron practically
to the fermi level. If ¢,> k&, then at least ¢, /k; phonons must be emitted to dissipate
the excess electron energy.

For a discussion of the scattering probability for electrons with intermediate
values of « see below (figure 8).

2.4. Electrons in a high magnetic field

All the discussion so far has assumed that the magnetic field H was zero. How-
ever, a sufficiently high magnetic field can change the probability of electron—
phonon scattering, at any rate for parts of the fermi surface which lie close to
extremal sections (Gantmakher 1972).

In a magnetic field the electron energy spectrum undergoes the usual Landau
quantization and takes the form (for H|| 2)

E = nhQ+ 72 k2 2m* (19)

where # is an integer; Q = eH/m,c is the cyclotron frequency, m, is the cyclotron
mass, and m* is the effective mass for motion along the magnetic field. As is well
known, the cyclotron mass is given by the integral

dk

c:ZT

(20)
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over a contour given by the intersection with the fermi surface of a plane per-
pendicular to H; v, is the component of the electron velocity in this plane.

The quantum numbers for an electron in a magnetic field are #, k, and &, (the
quantity ck,/eH determines the orbit centre, and the energy is independent of k,,
so the spectrum is degenerate). However, when 7 is large and the quasiclassical
approximation is valid, we can use the usual classification of states in terms of the
three components of the wave vector. For a high enough field (Q/v> 1) the allowed
states of the electronic spectrum in & space become a series of nested cylinders with
cross sectional area S, = 2mneH/lic. The shape of these cylinders depends on that
of the fermi surface; for an isotropic quadratic spectrum the cylinders are circular.

Figure 3. Spectrum of electrong in a magnetic field—a system of nested cylinders. The fermi
sphere divides occupied from empty states on the cylinders.

The use of k,, k, and %, as quantum numbers allows us to apply the law of
conservation of quasimomentum (equation (2)) in the calculation of the scattering
probability. The correctness of this approach for n>1, go/Q> 1 is confirmed by a
rigorous calculation.

For simplicity let us consider an isotropic quadratic spectrum such that
E¢> T>m*s% The occupied states on the cylinders lie within a sphere of radius ke
(see figure 4). In the neighbourhood of the extremal section the separation of the
cylinders is Ak = eH/kik,c. We consider an electron with energy E ~ E, and wave
vector k(| k| ~ k), located on a cylinder with sufficiently large n. If, in the neigh-
bourhood of k, the separation between the intersections of successive cylinders with
the fermi sphere Akk/k, = eH [Tk, c < gy, scattering by phonons can produce
transitions with Az>1 and the scattering probability v is the same as for H — 0
(see equation (10)).

It is, however, not difficult to see that there can occur, at sufficiently high fields
and near the extremal section where k, is small, a region for which the opposite
inequality is valid

‘ eH hQs m, Fk
%>QT’ Tgﬁ%>k_i' (21)

In this region of wave vector space the probability of transitions with Az#0 is
exponentially small, so all transitions due to phonon scattering take place with
An = 0.
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We can easily derive the lower boundary on the magnetic field for which this
region exists. The fermi cut-off is smeared in energy by T and therefore, for
ahQ = E,, the nth cylinder touches the fermi sphere of radius k; and contains
electrons only with

k,Sh-Y(2m* T)'e. (22)
By demanding that these electrons satisfy (21), we find
TN
nQz T( Tg) . (@_) g (23)
ms m,
The collision frequency for transitions with An = 0 is
A2 . -
/(5 = Tt [9g S @0 ) 8B~ B 7 24

where, as distinct from (4) and (6), the integration is over a surface and not a
volume, and there is an additional factor g = Q/27v, which is the degeneracy of the
states on the cylinder. If the cylinder has a circular cross section with radius k;, then
g = (2nhyeH|k;c.

The factor g affects the magnetic field dependence of v; at the same time the
power of T in the function W(T) is reduced, because after the elimination of the
S-function in (24) the integration is along a line on the cylinder, not over a surface.

The argument of the 3-function in (24) is given by
h2 qz2 _

2
+ ﬁ-——kz EC + F Figs.

- m* 2m*
Tt is clear from this expression that the region described by (21) can be divided into
two sub-regions. In the immediate neighbourhood of the central section k, = 0,
where for the majority of transitions k,<g,, the frequency of collisions with phonons
is

A2 Q 7)‘/2 q22
) = g | | 10000000085 ~igs
15 A
T 22n Wt psto
(here ¢ = (g,>+¢.%)"; and the factor 1-5 is the numerical value of the integral
{oel(e?— 1)1t dt). The upper limit on k, for this region is defined by the con-
dition k,<gp(2mT)* k. For sufficiently high fields there is another intermediate

region

(hQ) (m* s2)'e T (25)

70
<kz<sz%% ' (26)

(2mTY"
%

for which the argument of the 8-function is now %2k, q,/m* —figs, so that instead of
(25) we find
1 Am* )
127 ok, (RQ) T2 (27)
It is curious to observe that the scattering described by (25) and (27) cannot be
regarded as elastic, because the phonon energy figs cannot be neglected in the argu-

ment of the 8-function.

V(kz) =
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3. Electrical resistivity

So far we have discussed the scattering probability v(k), or the collision fre-
quency, which comes to the same thing, of a single electron. The inverse quantity
7(k) = v7I(k) is the mean lifetime of an electron in a state between two collisions
with phonons. It is natural to ask what is the relation between this time 7, which
has a clearly defined physical significance, and the electron—phonon relaxation times
7; which are measured experimentally in various situations.

We begin with measurements of the Dc electrical resistance. The interpretation
of these is discussed in a large number of papers and reviews (for example Mac-
Donald 1956, Gurzhi 1968, Springford 1971) and here we limit ourselves to a dis-
cussion of the basic factors which determine the salient features of the physical
behaviour.

3.1. Small-angle scattering

If a single scattering process transfers an electron to a state with any direction
of vy, with practically equal probability, this is referred to as isotropic scattering.
Impurity scattering in a metal, for example, is isotropic because the impurity
potential is always short range as a result of the strong screening.

Phonon scattering is by no means always isotropic. It is isotropic at high tem-
peratures when the inequality in (12) is valid, as can be seen from the expression
under the integral in (13). It is also isotropic when the inequality in (14) is valid,
since transitions to all points along the perimeter of the cylinder are in practice
equally probable, and the velocity v, can take any direction in the plane per-
pendicular to the axis of the cylindrical fermi surface. However, phonon scattering
becomes strongly anisotropic when the inequality in (9) is valid, because then most
scattering processes change the direction of the velocity by an angle

0 =qu/ky = T/O<1.

(If k; ~ K, then 6 ~ T/T;,.)
The current through the sample is determined by the non-equilibrium per-
turbation Af to the distribution function:

j= % [aek afe. (28)

When one of the electrons which contributes to the integration in (28) makes a
transition from state k to state k' as a result of a collision, its contribution to the
current changes by eAv = ¢(v;. — v,). This change is a measure of the effectiveness
of the collision, and it must enter into the expression for the relaxation time for
electrical conductivity—the so-called transport relaxation time—together with the
collision probability. The well-known expression for the transport relaxation time
under conditions of elastic scattering is

ol = f (1— cos B) v(6) dO (29)

(8 is the scattering angle and d@ is the element of solid angle), which compared with
(4) contains an additional weighting factor (1—cos6) (sce, for example, Peierls
1955 or Ziman 1960). For small § this factor is 162 ~ $(q/ke)%
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We can use (29) to calculate the conductivity only after a whole series of sim-
plifving assumptions: that the constant energy surfaces are spherical (so that 6 is
both the angle between k and k' and the angle between v, and v,.), that v, depends
only on 8 and is independent of k, etc. However, the fact that the effectiveness of
small-angle scattering is proportional to the square of the angle is of much more
general importance, since the effectiveness is essentially determined by comparing
the old velocity with the projection on it of the new velocity.

Thus phonon scattering is anisotropic under the conditions in (9); the con-
ductivity is determined by the transport relaxation time not the total relaxation
time, and the effectiveness of collisions is temperature dependent. This is why the
resistivity p varies with temperature as T3 (the Bloch-Griineisen law), ie more
rapidly than the total collision frequency in (10).

3.2. Diffusion approximation

The fact that the wave vector ¢ of a thermal phonon is small compared to k;,
together with the condition ¢ LVE, enables us to discuss the change in electron
wave vector in successive collisions of phonons in terms of the diffusion of the
electron over the fermi surface (Klemens and Jackson 1964). If in real space the
particle moves with constant velocity between collisions and then suddenly changes
its velocity in the collision, the point on the fermi surface which represents the
electron does not move between collisions (or in the presence of a constant magnetic
field it rotates along a cyclotron orbit) and in a collision it is suddenly displaced in
the surface by a distance q. Since the average value of the wave vector of phonons
interacting with electrons is | g| @ ¢y, and the direction of the vectors q is arbitrary
in the tangent plane, the electron will be displaced from its initial point by a distance
gr /P after a large number P of collisions.

The well-known Bloch—Griineisen law for the temperature dependence of the
resistance for T'< Ty, follows immediately from this. To be effectively scattered the
electron must diffuse some fixed temperature independent distance « on the fermi
surface, and this requires P = (x/gy)? collisions. These collisions occupy a time

2
S (30)
v gty
where the collision frequency v is given by (10). Since v cc T3, it follows that
7 ¢ 1'%, and the resistivity p = m*/Ne? 7, ~ TS (N is the electron density).

It is sometimes convenient to introduce a diffusion coefficient &, equal to the
mean square displacement in unit time of the electron along some particular
direction:

Dz qPv~T% 1,=x%D (31)

and to discuss the whole problem in ‘diffusion language’ which is mathematically
equivalent to the kinetic equation. The most logical and elegant approach of this
kind is due to Pippard (1964, 1968). The application of an electric field & displaces
the fermi surface as a whole in k space, with velocity e€/%. This also continuously
generates a perturbation to the distribution function at each point in k space at a rate

(). ()

Since 9f (WJOE ~ — §(E — Ey), this generation takes place only at the fermi surface.
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This process can be considered as the creation of new electrons at those parts of the
surface where €. v> 0, and of new holes where &. v < 0; these new particles diffuse
over the surface and annihilate each other whenever they meet. The search for a
stationary value of Af thus reduces to the solution of a diffusion equation. The
distribution of sources over the fermi surface is given by (32), and the diffusion
coefficient by (31); the specific features of a particular problem are reflected in the
distribution of particle sinks, the regions of most intense annihilation, ie in the
formulation of the boundary conditions for the diffusion equation.

Figure 4. Fermi surface of copper. The lines of the intersection of the fermi surface with the
Brillouin zone boundaries are additional sinks. Two equivalent points on the fermi
surface are shown by the letter a (from Pippard 1964).

In the kinetic equation the change in the distribution function due to collisions
includes both the scattering of particles out of a given state and scattering into this
state from other states. (The quantity »(k) discussed in the previous section is the
probability of scattering out of a given state.) The diffusion equation automatically
takes account of both these processes, since a particle created at the point k can
diffuse to a region of the fermi surface which is farther from the sinks than the
point k. On the other hand, the continuity of the density of diffusing particles
ensures that the appearance of new sinks reduces the density Af over the whole
surface.

3.2.1. Examples. We illustrate the above remarks with examples taken from the
work of Pippard (1964). If the fermi surface is spherical it is clear that the sinks are
situated on the great circle (the equator) perpendicular to &, where A f=0. When
it reaches the equator, an electron annihilates with a hole that has diffused to the
equator from the other hemisphere. Let us now consider the fermi surface of
copper, which consists of a system of spheres periodically repeated in k space and
connected to each other by small necks. One of these spheres is shown in figure 4.
This surface has additional sinks at the necks, because in this region, where the
radius of curvature of the surface is relatively small, a small change in the wave
vector can produce a large change in the direction of the velocity, and an electron
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which has diffused a small distance across the neck will find itself almost immedi-
ately in the other hemisphere. The presence of extra sinks must, of course, affect
the value of =, (see equation (31)), and =, will depend on the position of the equator
with respect to the necks ie on the direction of the electric field &. The effectiveness
of scattering becomes anisotropic, not because of the phonon spectrum or the
deformation potential, but because of the shape of the fermi surface itself.

H

Figure 5. Schematic representation of the fermi surface of copper. The broken lines show
sinks in a high magnetic field (from Pippard 1964).

Copper in a magnetic field provides another interesting example. Suppose that
we are interested in longitudinal magnetoresistance in a field H[|&||[001], and H is
large enough that the cyclotron frequency Q>v. Then the sinks, together with the
equator, are given by the broken lines in figure 5 instead of the perimeters of the
necks. In fact the contribution to the current, as given by (32), of an electron
created at some point on the surface is given by the orbital average of its velocity
parallel to the field

56 h §‘U€ dk

2am, ) v,

Scattering along the orbit is therefore unimportant from the point of view of
longitudinal magnetoresistance; the relevant diffusion becomes one-dimensional,
transverse to the cyclotron orbits. The broken lines in figure 5 distinguish those
orbits which have an opposite sense of traversal, as a result of the multiple con-
nectivity of the surface. Transitions across these lines change 7, discontinuously
by a large amount.

3.3. Umklapp processes

The correctness of the above discussion rests on the assumption that the
phonon distribution function is in equilibrium, ¢, = ¢{*, which means that there
must be some mechanism for dissipating momentum. If there is not, the phonons
are dragged along by the electrons, the difference between ¢, and ¢ becomes
appreciable, and the variation p oc T is replaced by an exponential drop in electrical
resistivity as the temperature is reduced (eg see Peierls 1955).
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Umklapp processes guarantee a mechanism for the dissipation of momentum.
It therefore often follows just from the topology of the fermi surface that phonon
drag will not occur. For example, for an open fermi surface there are always
regions near the zone boundary for which collisions with K # 0 will take place right
down to T = 0, no matter how the unit cell of the reciprocal lattice is chosen. If the
fermi surface is closed but its separate pieces come close to each other, Umklapp
processes will occur for gp>g, (see figure 2), and the corresponding temperature
can be quite low. Phonon drag also does not occur when the number of electrons
in the metal is equal to the number of holes, because electrons and holes acquire
opposite extra momenta from the electric field.

The practical outcome of these considerations is that the only materials in which
the exponential drop in p with decreasing temperature can be observed are the
alkali metals, but even in these it has not yet been observed (Ekin and Maxfield
1971). We shall return to this problem later, after discussing a second aspect of the
influence of Umklapp processes on the electrical resistivity. At this point we just
note that the diffusion equation can be derived from the kinetic equation even if
phonon drag by electrons is taken into account (Gurzhi and Kopeliovich 1971);
the problem is similar to that of diffusion in a flowing liquid, but the flow velocity
of the ‘phonon liquid’ is in its turn determined by the rate of creation of the
diffusing particles.

3.4. Hot spots

'The above discussion of the anisotropy of phonon scattering has been in terms
of the dependence of the scattering probability on the final state k' of the electron,
for a given initial state k. It is also clear that another kind of anisotropy can be
associated with electron—phonon scattering. This is again due to a specific feature
of the electron spectrum—the strong dependence of 7, on k.

First, the fermi surface of most metals contains both regions with large radii of
curvature k;, where (10) and (30) are valid, and other regions with small radii of
curvature, where 7, ~ v=(k) and »(k) is given by equations like (13) or (15). One
would think that the small regions give only a small contribution to the resistivity,
but this is not always the case. It was shown by Gurzhi and Kopeliovich ( 1971),
using a model fermi surface consisting of ‘large’ surfaces joined by narrow necks
and including phonon drag effects, that the temperature dependent part of the
electrical resistivity is determined by just these necks, in fact by the resistance
which they present to diffusive particle fluxes on the fermi surface. For a given
ratio of the parameters in this model, the electrical resistivity can be proportional
to T4, not to T3 as is usual.

Secondly, 7, is strongly affected by situations in which the fermi surface con-
sists of several sheets, in particular by the presence of regions with large radii of
curvature k; which are comparatively close to each other in k space. These regions
can occur because of a ‘trivial’ multiple connectivity of the fermi surface (eg as in
tin) and as a result of Umklapp processes (see figure 2). Itis clear from (10) and (11)
that the effect of multiple sheets on the value of v is less marked, increasing it
roughly speaking by a factor of two. However, whilst scattering within a single
sheet produces only a small change in electron velocity, as in (9), and the effective-
ness of this scattering contains a factor of order (7/Q)?, scattering to another sheet
must almost always be accompanied by a large change in velocity (either in
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magnitude or, as in Umklapp processes, in direction). Therefore, as distinct from the
function v(k), the local values of 7.,(k) change by a factor of (Q/T)? in these regions

ie by two to four orders of magnitude (these regions have been named ‘hot spots’
by Young 1968).

Figure 6. ‘Hot spots’ on the fermi surface of potassium, which has a Bcc lattice, lie in the
<110> directions. Cf figure 5: on the fermi surface of copper the ‘hot spots’ have
become necks in the [111] directions (from Young 1968).

The distribution of hot spots on the fermi surface of an alkali metal is shown in
figure 6. It has repeatedly been shown experimentally that the resistivity of potas-
sium decreases more quickly than 7'% at helium temperatures. Phonon-drag effects
and the freezing out of the extra scattering channel through the hot spots will both
lead to this more rapid decrease in the temperature dependent part of the electrical
resistivity. However, it is doubtful whether it is possible to separate these two
effects. It is true that Ekin and Maxfield (1971) obtained good agreement between
their experimental data and calculated curves which were obtained by neglecting
phonon drag effects and including only the freezing out of the scattering channels
through hot spots. On the other hand, when Umklapp processes have been frozen
out for the fermi surface of an alkali metal, and p > p,, there is no mechanism for
preventing phonon drag. Itis possible that the effect of phonon drag is numerically
much smaller than that of the freezing out, but this question has not yet been
investigated. '

The presence of hot spots leads to a series of non-trivial effects even for a
spherical fermi surface. It was shown by Kagan and Zhernov (1971) that the
perturbation to the distribution function A f contains, as well as a term of the same
symmetry as the field term (equation (32)) in the kinetic equation, other terms which
reflect the symmetry of the distribution of hot spots on the fermi surface, and over a
given temperature region these can reduce the resistivity by a factor of three or so.
The presence of isotropic impurity scattering smooths this effect, because large-
angle scattering by phonons at the hot spots has an equivalent effect to isotropic
scattering at impurities. At helium temperatures and for the values of g, found in
real metals these two scattering mechanisms are of comparable strength for im-
purity concentrations of 10—3 to 105, This can give rise to considerable deviations
from Matthiessen’s rule at very low impurity concentrations. These deviations have
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been repeatedly observed experimentally (eg by Tsoi 1969 and by Caplin and
Rizzuto 1971).

The application of a magnetic field makes the function Af isotropic, or at least
partially so, because of the motion of electrons around the cyclotron orbits which
pass through the hot spots. This effect was considered by Young (1968) and it was
shown that in principle it was possible to use this effect to explain the linear field
variation of the transverse magnetoresistance which is observed in alkali metals.

4. Kinetic effects from extremal trajectories

The electrical resistivity, together with a number of other ‘traditional’ pro-
perties of metals, such as the Hall effect, thermal conductivity and specific heat, are
all integral parameters of the metal in that they are determined by electrons over the
whole fermi surface. We now turn to experiments of a different type, where the
effects are due to the parameters of particular groups of electrons on the fermi
surface. In this section we discuss the possibility of measuring the frequency of
electron—phonon collisions by using R¥ size effects, cyclotron resonance, ultrasonic
absorption and resonance effects due to magnetic surface levels.

4.1. General principles

Theories of all the effects listed above and also of other similar effects are based
on the relaxation time approximation. The value of v,z which appears in the kinetic
equation in these theories is an independent parameter. We have already seen in
the previous section that v,z can bear a very complicated relation to the total col-
lision frequency, and in all cases the clarification of this relation necessitates
additional analysis, based on the existing theory.

4.1.1. Nonequilibrium perturbations of the distribution function. All the effects under
discussion have one feature in common: they are determined by a perturbation to
the distribution function Af which is nonzero only over a small region 3 of the
fermi surface. Although the position on the fermi surface of this region = can vary
from point to point in the crystal, at any particular point in real space it can be
roughly represented by a rectangle with two characteristic dimensions A, &, Ay k<ky.
We shall leave estimates of these parameters in particular cases until later; at this
point we merely note that at helium temperatures A, k and A, k can be either greater
than or less than ¢y, the momentum of a thermal phonon. The most interesting
case is

gr>min (A, &, A, &). (33)

Since collision with a phonon shifts the electron by a distance gp on the fermi
surface, it follows from (33) that any collision will take the electron outside the
region X (see figure 7). To determine the amplitude of the effects considered it is
not important to know how far from the initial point k the electron finds itself after
scattering, the important feature is that it has been scattered outside the effective
region Z. It therefore follows that when the condition in (33) is satisfied the phonon
part vy, of the effective collision frequency v.q in the kinetic equation is

Vph = Ver — Vo (34)
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(vo is the freqﬁency of collisions with static defects) and is determined by the total

relaxation time (equation (4)) and not by the transport relaxation time (equation
(29)) (Azbel’ and Kaner 1958).

Ak

Figure 7. Scattering process which removes an electron from the effective zone £ on the fermi
surface.

This function v, differs somewhat from the functions in (10), (13) and (15) for
two reasons. First, the amplitude of the effects considered is determined, strictly
speaking, by the rate of change due to collisions of the increment Af which had
already been produced in the region X by some other means. This change is
produced as a result of both scattering out of the state k:

ANose ~ Af[$(1 = fse) + (P + 1) (1= fr )] (35)
and of scattering into the state k from other states, according to the Pauli principle:
ANgain~ = Af[$e fo—o+ (b +1) il (36)

The total change in the number of particles, normalized to one electron, is given by
(Sharvin and Bogatina 1969)

AN 1
B K? - B(A]vlose - ANgain) ~2¢.+1 e fms

_ (e*+1)%(e!+ 1) _
T @—1) (&1 1) (et 1)—(1)2(“: t). (37)
As in (7), we use here the equilibrium distribution functions, because Af = 0 over
most of the fermi surface.
The difference between the functions @y(«, ¢) and ®,(«, £), which were introduced
in (7), is illustrated graphically in figure 8. For negative « the integral

Ti(o) = f:’ﬁ D,(o, 1) dt

which contributes to »(T') (see equations (6) and (10)) tends to zero, because the
larger the value of |«|, the smaller is the number of unoccupied states around the
electron into which it can be scattered by thermal phonons. However, the per-
turbation to the distribution function in the region «<0 consists of additional
unoccupied states, ‘holes’ in the électron distribution. The lifetime of these holes
(which should not be confused with holes in semiconductors!) decreases as |«|
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increases, because of the increased number of spontaneous transitions from the
upper occupied electron levels with the emission of non-thermal phonons. It is
natural to expect that the lifetimes of electrons and holes with the same value of
|| are the same: a perturbation of the distribution function for negative « is dissi-
pated at the same rate as one for positive a. For a = 0 the integral

740) = [P0y, 14t = 27,0)

4.1.2. Averaging over energy. A second distinction between the measured value of
vpn and that which appeared in (10), (13) and (15) is related to the dependence v(«).

-4 -2 0 2 4

Figure 8. Graphs of the functions J; ;, = fwtz D, o (xt)dt
[}

In any practical experiment we are dealing with some range of initial electron
energies, and it is necessary to average over these. The situation is complicated
by the fact that usually the measured quantity 4 is not proportional to the collision
frequency v.g, but has some more complicated dependence. For example, as we
shall see below, in many cases A~exp(—I'vy), where I' is some dimensioned
coefficient.

When all the electrons of interest lie within the region of thermal smearing of
the function f{?, ie, when |a]|<1 for all the electrons which are relevant to the
experiment, this difficulty can be avoided by using the fact that » varies little com-
pared to its average value over this range, so that in a linear approximation for the
average values A(v) = A(7). To calculate 7 we use the fact that the perturbation
Af obtained by solution of the linearized Boltzmann equation is proportional to
(—0f ‘9/0F) and we can average (37) over the initial electron energies contributing
to Af before integrating over S, in (6). Since the ratio between Af and df ' [0E
can be considered constant along the normal to the fermi surface in its immediate
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neighbourhood, we can write

[BAfD, (o, t)dE [w Dy, f)da 2t

f?)o Af dE - J - (ea+ 1)2 - (et_ 1)2- (38)

Pz(t) =

Replacing P,(0,t) by Py(t) in (10) and (15) changes only the definite integrals and
consequently the numerical coefficient in (10) is increased by a factor of &%, whilst
that in (15) is increased by §. Since for <1 we have D,(t) ~29,(0, t)zZt‘,' the
coefficient in (13) is doubled. As a result we obtain:

__}_ A2TS3 J"” Betdt _3(:(3) A2T3
Vph_ZTrTi4,LLs4‘Z) o (e‘—l)z— m  hustv’

gy <kt {(3)=1,2,0 (39)

1m,A2T? (= peidt  7m A2 T?

ki <gr <l von = 2 us Jo (@—112 3 Hpus (40)
An T
kf<QT: Vph = 7771_/—”’;'2_- (41)

The quantity vy, in (39)-(41) is in fact the collision frequency which is measured
in the experiments discussed below, provided the condition in (33) is satisfied. The
region of the fermi surface to which this value of vy, refers depends on the geo-
‘metry in a particular experiment. Usually it is the result of averaging along an
extremal orbit on the fermi surface.

4.1.3. The diffusion limit and an interpolation formula. I the opposite inequality to
that in (33) is valid, we must return to the diffusion approach, but with a value of «
different from that for a DC current; the line of sinks can now be considered as being
along the perimeter of the effective region. The parameter vpy in (34) is now
replaced by another parameter v}, which is no longer given by (39)~(41), but
because of the different « it is also different from v,, which determines the electrical
resistivity. Equation (34) should itself be treated with caution, since we have seen
that nonlinear interference effects are possible as a consequence of the diffusion
origin of v}

These two cases (g7 <02k and gp> A, k) can be distinguished directly from
the experimental results, without any preliminary estimates: (veg—vo)~ T'® for
diffusive scattering, whilst the total collision frequency follows a power law depen-
dence, with an exponent less than 3 (see equations (39), (40) and (41)).

The intermediate case gp = A; k, Ak may of course also occur. Experimental
results may then be analysed by using an interpolation expression such as that
proposed by Myers et al (1972):

o goetdt o Betdt
vpn = C; T C, 3f
t

o (@- 12" L (@177 *2)
Here t, ~ A, ks/T is determined by some average value of min (A, %, Ay k) over
the orbit, and is in practice a fitting parameter like the constants C; and C,. The
expressions within the integrals in (42) are somewhat different to those in the paper
referred to above, because they used a simplified form of the function ®y(«,2). It
has been shown that this approximation is justified in the calculation of the elec-
trical resistivity (eg see Ziman (1964)).
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4.2. Radio-frequency size effects

When the surface impedance of a plane-parallel metal plate is measured as a
function of the magnetic field H, singularities occur in fields such that the plate
thickness d is an integral multiple of a characteristic dimension of an extremal
electron trajectory, and these are the lines of the radio-frequency size effect (RFSE)

®)

Figure 9. Shape of electron trajectories in RFSE: (a) for an extremal closed trajectory; (b) at a
limiting point.

(Gantmakher 1967). The relative width of these lines is AH/H ~ 8/d, where § is the
skin depth. The experimental geometry for two types of RFSE is shown in figure 9;
these are for closed trajectories and for limiting points, and these two examples will
illustrate all aspects of the measurement of the mean free path / using the rRFse. The
amplitude 4 of the RFsE line is governed by the probability that an electron will
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traverse, without being scattered, a path A along the trajectory from one side of the
plate to the other. If the electron collides with the surface after arriving at the other
side of the plate, as in the case of RFSE from a limiting point (figure 9(4)), then

A~exp(—%\) =exp(—2—ﬂg@) (43)

where 7 is the number of turns along the cyclotron orbit made by the electron in
the path A; and v is the effective collision frequency at scattering centres of all
types (Gantmakher and Sharvin 1965). For RFSE from a limiting point the lines
occur at fields H, = nH, corresponding to n = 1,2,3,.... H; is determined by
the plate thickness, the field tilt 4, and the mean radius of curvature of the fermi
surface at the limiting point: H, = 2mpk;cipfed. The amplitude of the lines
A ~exp (—2am,cvgleH,;), where the cyclotron mass m, and the collision frequency
veg refer to the immediate neighbourhood of the limiting point.

For RrrsE due to closed trajectories (figure 9a) the path from one side of the plate
to the other occupies one half of a cyclotron period, but the electron can return to
the skin layer many times, so that

A~eMpe2pedy | = (eM-1)1
= [exp (wveq m, c[eHy) — 1] (44)

where H, is the field at which the line is observed. (Equation (44) is valid for two-
sided excitation of the plate by an electromagnetic wave, provided the ac electric
fields at the surfaces satisfy £(0) = —&(d); it is not difficult to write down analogous
expressions for other types of excitation.)

Equations (43) and (44) are applicable only when the quasistatic condition

O LVege (45)

is satisfied; the frequency w of the ac field must be such that the field in the skin
layer does not change appreciably over the time the electron moves without being
scattered (Haberland and Shiffman 1967). Experiments are usually carried out in
the frequency range w/27 ~ 109-107 Hz, for which this condition is almost always
satisfied.

A lower limit on the frequency w is due to the requirement that §/d should be
small, in fact the need to have a skin layer is the only reason why an ac field is
necessary.

4.2.1. Optimal experimental conditions. The temperature dependence of v,; can
thus be deduced from measurements of A(T) by using (43), (44) and (34). It is
advantageous to use samples which are as thick as possible, first because an increase
in d, and hence in X which is proportional to d (and a reduction in Q) increase the
sensitivity of the amplitude 4 to changes in v.4. Secondly,

exp (—mv/Q) <1 (46)

for A/l>1, and even for closed orbits we can use (43) instead of (44); in the former n
should be put equal to 4. Equation (43) is much more convenient, since on taking
logarithms the term containing v,; separates, and in coordinates (Ind4, 77) the
experimental points lie on a straight line:

In A(T') = const—(2mn/Q)BT", vy, = BT" (47)
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Figure 10. (a) Typical traces of RFSE lines for closed trajectories in antimony. The left-hand
line is from a hole ellipsoid and the right-hand from an electron ellipsoid. d = 0-32 mm;
w/2m = 12:5 MHz. X is the imaginary part of the surface impedance. The amplitudes
used for analysis are defined by the arrows. (b) Amplitude of the RFSE line from a hole
ellipsoid as a function of T (shown by +), T2 (shown by @), and 7* (shown by O). It
can be seen that the filled circles are a good fit to a straight line; B is determined from
the tangent of its slope (see equation (47) ) (from Gantmakher and Dolgopolov 1971).
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(see figure 10(d)). If we start from (44), (47) is replaced by the expression

In (%T)—i-l) =2—gfvo+2%nBT’; C=A(O)[exp (ZLano)—l] (48)
in which, unlike (47), the argument of the logarithm contains the parameter C,
which is mainly determined by the value of v,.

A useful feature of (47) is that v, and vy, appear in it in different items. This
enables us to determine v, when v,, <»,. An increase in sensitivity is needed to
satisfy this inequality, but this also ensures that the line shape and the value of §
remain unchanged over the whole temperature range. The point is, that for H
parallel to the surface and Qr>1 (the condition for electrons to return to the
skin layer many times), the value of & and also the RFsE line width depend on v
(Naberezhnykh et al 1971) which means that the amplitude measurements A(T)
are of little value so long as v, ~ vy, If the sample thickness is chosen so that the
apparatus is operating near to the limit of sensitivity, then the condition in (46) is

automatically satisfied and there are no problems with the temperature dependence
of 8.

4.2.2. Size of the effective region. Estimates of the size of the effective region X can
be obtained either from the general expressions for A f(x, k) (Kaner and Gantmakher
1968), or by using simple physical arguments (Tsoi and Gantmakher 1969).

Contributions to the RFSE line come from a certain layer of orbits on the fermi
surface which have the same characteristic dimension for the trajectory (to an
accuracy of 8). As an example, the width of this layer for an RrsE line from the
central section of a spherical fermi surface with radius &, is

Ak = ky(S]d). (49)

The important electrons within this layer are a group which have a particular
phase of rotation in their orbit. It is well known that under the conditions of the
anomalous skin-effect the perturbation to the equilibrium distribution function
Af+#0 only over a narrow region on the fermi surface. If there is no magnetic field,
Af(x, k) # 0 only for distances x < § from the surface, and only in a layer of thickness
Ak x ky(8/1) along the line v, = 0 on the fermi surface, the ‘effective zone’ as it is
often called. In a magnetic field Af(x, k) is non-zero over a much larger distance
x~I>9, and in particular this gives rise to current splashes within the metal
(Kaner and Gantmakher 1968). For any value of x’ the perturbation Af%0 is true
only in a narrow zone whose position on the fermi surface depends on x in the same
way as that of the corresponding electrons moving over the fermi surface in a
magnetic field (see figure 11). The width A, & of the zone also depends on x, and both
this and A, % are functions of the parameter §/R, where R is the cyclotron radius.
For example, for a quadratic dispersion law and a magnetic field H parallel to the
surface of the metal, the width of the zone near the central section oscillates

from A kD x ky(§/R)"  for x ~ 2nR

=0,1,2,....  (50)
to Ak®xk(S/R)  forxx(2n+1)R

In order to apply these estimates to the first RFsE line (d = 2R), R in these expres-
sions should be replaced by d. For an orbit near a limiting point in an inclined
field H, A, k oscillates from k(8/R)% " for x ~ 2zmyR to ky(8/R) for x ~ (2n+1)myR
(n=0,1,2,..).
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For a fermi surface of arbitrary shape the values of &, in the above estimates
would be a little different. The value of A, % for a closed extremal orbit is deter-
mined by the radius of curvature of the fermi surface at the point v, = 0 on an
extremal orbit in a plane containing the magnetic field (see figure 11); the value of
Ay k is determined by the radii of curvature of this orbit at different points.

Extremat
orbit

Figure 11. Effective zones T for RFSE from an extremal orbit on a spherical fermi surface.
The zone X for x = 0,2R, 4R, ... is A; kA, BY; the zone X for x = R, 3R, 5R, ... is
Ay RA, B,

4.2.3. Averaging of the collision frequency along the extremal orbit. Typical experi-
mental values of 8/d lie in the range 10--10-2, and at helium temperatures the
values of gr/k; lie in approximately the same range. Hence gy can be either greater
or less than A;,k. This is in agreement with the fact that the experimentally
observed dependences vary from v}, ~ T (figure 12) to v,y, oc 7% or T2 (figures 10
and 13). Moreover, since A,k is a function of x, it can happen that the condition
in (33) is satisfied over one part of the trajectory but not over the rest. This was
clearly the case in the experiments on potassium (Tsoi and Gantmakher 1969,
Blaney and Parsons 1970), where the estimate of g, lies in between the two values
in (50). A transition from a cubic dependence to 7' was observed in these experi-
ments as the sample thickness was reduced, and §/d correspondingly increased
(figure 13).

A comparison of these results for potassium (figure 13) with those for cadmium
(Naberezhnykh and Tsymbal 1967) shown in figure 12 is quite instructive. It
follows from (49) and (5) that the region of effectiveness is narrower, and hence that
small angle scattering is more effective, over the part of the trajectory where the
electron moves normal to the surface of the plate. The inset in figure 12 shows the
shape of the relevant trajectory in cadmium. It is such that there is no region with
Ayk x 8/d, and therefore, despite the approximately equivalent experimental con-
ditions, different temperature dependences were observed: in potassium it was
possible to measure the total scattering probability over at least part of the tra-
jectory, but in cadmium the scattering was diffusive over the whole trajectory.
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It is clear from figure 11 that the electron—phonon collision frequency measured
from the RFSE from a closed trajectory is an average value along the extremal orbit,
so that in all the expressions in this section it would be more correct to write
instead of v, the averaged value

gn = L§; - dkvon (51)

2am, v,

(the weighting factor 7! takes into account the rate at which the electron moves
around the extremal orbit). We shall, however, omit these brackets wherever this
will not lead to ambiguity.
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Figure 12. Dependence v,(T") for cadmium for a trajectory whose shape is shown in the inset
(from Naberezhnykh and Tsymbal 1967).

For (51) to be applicable, the scattering must be effective along the whole
trajectory, but we saw from the experiments on potassium that this is sometimes
not the case. A second weighting factor, which takes into account the effectiveness
of scattering, must then be included in (51). One such factor which might be
proposed is, for instance, the cosine of the angle ¢ between the electron velocity and
the normal to the sample surface

13 cos dk
oy = 5(5 cosbvp k. (52)
orbit

2mm, v,

The amplitude of an RFSE line at a limiting point is determined by scattering
over an orbit with diameter 2k, around the limiting point (&, is the radius of
curvature at the limiting point). For small ¢ the value obtained for v, refers
directly to the limiting point, but for large i the difference between the limiting
point and the extremal orbit around it can become appreciable (Snyder 1971).

_4.3. Cyclotron resonance

Azbel’-Kaner cyclotron resonance (CR) occurs at magnetic fields satisfying the
condition

w=n, (#r=012..). (53)



Electron—phonon scattering in metals 343

The field in the skin layer changes by an integral number of cycles in the time which

“the electron takes to go around its orbit and return to the skin layer (Azbel’ and
Kaner 1958). The time between electron collisions must of course be much
greater than the time for one cycle of the electromagnetic field: wr> 1.
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Figure 13. RrsE from an extremal closed orbit in potassium. w/27 x4 MHz: O—sample
thickness 0-63 mm; x—0-26 mm; ®—0'23 mm; +—0-24 mm; ¥—0-09 mm (from
Tsoi and Gantmakher 1969).

The discussion of v}, in §4.1 is also valid here for frequencies up to w/27 ~ 1-5 x
101° Hz at helium temperatures such that %w < T': the fermi surface has an effective
zone with an area of order A, kA, k; when the condition in (33) is satisfied a single
collision will remove an electron from this region; and the measured collision
frequency is related to the matrix element in (5) by (39)—(41). In cyclotron resonance
it is probably not necessary to take into account the magnetic field variation of the
collision frequency v, for an electron near an extremal section (see equations (25)
and (27) ), because the width A, & of the effective region is usually much greater than
the value of &, given by (21).

4.3.1. Size of the effective zone. The values of A, k and A,k are of course different
from those in RFSE,

The thickness A, k of the layer of resonant orbits depends on the dispersion of
the cyclotron mass. If the mass of all orbits is the same, then all orbits are in
resonance together. If m, = my(k,), the relative width of the resonance is
AH,/H,~Amm, and also AH,/H,~(w7)~! (Azbel’ and Kaner 1958, Chambers
1965), so the thickness of the resonant layer is

mc Yo 32 mc /——1/2
ks () () 4

wT
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However, the other dimension A, % of the effective zone is usually more important
from the point of view of the effectiveness of collisions, and this is determined by
the time which an electron spends in the skin layer ie we usually have A,k <A, k.
This dimension, as in RFSE, changes along the orbit in accordance with (50). Where
the electron is moving parallel to the surface of the metal and scattering leads only
to a reduction in the phase of rotation, A, kD x k,(8/R)"2; but where the electron is
moving perpendicular to the surface a more important consequence of the scattering
is a shift in orbit centre, and A,&® % k(8/R). The numerical value of §/R in
cyclotron resonance is of the same order of magnitude as in RFSE, ie both & and
R oc H~! are 20-30 times smaller in CR than in RFse. This means that the tempera-
ture dependences observed experimentally in CR can also be as 75, T'3 or T'2.

'The fact that A, k, and hence the number of resonant electrons, depends on 7,
must in general affect the cr amplitudes. This dependence explains why Kaner and
Azbel’ (1957) obtained different power laws for the temperature dependences of the
cr amplitudes for quadratic and nonquadratic dispersion laws. However, the
expressions in this paper were derived on the basis of two assumptions. Firstly, it
was assumed that resonant electrons make the main contribution to the impedance,
so that the penetration depth 8 changes appreciably at resonance, and secondly, it
was assumed that v, <vy, so that a change in v,, changes A %, which in its turn
changes § and so on. It is clear that neither of these assumptions is fulfilled experi-
mentally, and therefore the dependences predicted by Kaner and Azbel’ have not
so far been observed.

4.3.2. Methods of measuring the scattering frequency. The summary frequency vy;
and not v, has always been measured in CR experiments, and measurements have
been made in two ways. Haiissler and Welles (1966) based their method on the
impedance expression

Z(H) = Z0) (1—e )%, w =5 (o +veg) (55)

and by differentiating this with respect to H it is straightforward to show that, when
the magnetic field derivative of the resonance is measured experimentally, the
amplitude of the nth cr line (Q, = w/n) is given by

A, ~n?exp(— 2y glw) (56)
provided that
2mnyog/o> 1. (57)

It is now possible to determine v,z by constructing a graph of In(4,,/n?) as a
function of 7, and measuring the slope of the straight line obtained when # is
sufficiently large (see figure 14).

Although (55) assumes that the impedance is mainly determined by resonant
electrons, (56) is also valid in the opposite limiting case when the contribution of
resonant electrons is small. This can easily be shown, for instance, by using the
ineffectiveness concept (Heine 1957): from the expression for the effective con-
ductivity

a
UeffZS(a0+_-1—‘)) ag>a,

l—ew
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it follows that
| N PN S S
VA (a0+1_e_w) 3ao(l ewW)1, (58)

On differentiation with respect to H, this expression again gives (56) provided that
(57) is satisfied.

"This method has been used to measure v4(T') both under conditions such that
(33) is satisfied (Haiissler and Welles (1966) found that vpp o€ T8 for copper), and
in the diffusion limit (Poulsen and Datars (1970) found that v, oc T4% for mercury).
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Figure 14. Graphs illustrating the applicability of equation (56) to cR from a central section
in copper for H||[100]. w/27 = 34-8 x 10° Hz (from Haiissler and Welles 1966).

However, this approach can be used only when wr is not too large; the inequality
27n> wr must be satisfied for (56) to be valid, but for very large the time the
electron takes to pass through the skin layer becomes comparable with the period
of the microwave field and (56) is again no longer applicable (see §4.3.3 below for a
discussion of the retardation effect). Under diffusion conditions gp <A, .k, there
is yet another difficulty in the interpretation of results, specifically related to the
electron-phonon part of the scattering frequency: both A,k and the effective fre-
quency vy, x vy, (Ayk/gp)? can vary with the resonance number.

Both these difficulties in the measurement of vpn €an be avoided by slightly
changing the method of measurement: by fixing the number of the resonance one
can use (56) to analyse the dependence 4,(7), exactly as was done for the RFSE
(cf (43); in distinction from (43) it is not assumed in (56) that the electron returns
to the skin layer once only). Just as in RFSE, the inequality v, <v, does not reduce
the accuracy of measurements of v, but in fact increases their reliability, because
this inequality ensures that A%, 8 and the resonant factor in equations (55) or (58)
are independent of temperature. No measurements of A, (T) for fixed n have so far
been published.

The second method of determining v, is based on an analysis of the cr line
shape. It was shown by Chambers (1965) that when an electron makes a sufficiently
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large number of revolutions within its mean free time (wr 2 50), but at the same time
the impedance is determined mainly by nonresonant electrons, the line shape
becomes independent of 7 and is basically determined by the derivative (8%m,/0k,?)
ie by the dispersion of the cyclotron mass. The line width then depends only on
wr (the ratio between the number of resonant and nonresonant electrons is in fact
not at all critical (Goy and Weisbuch (1969)). The first measurements of v,; from
the cr line width were made by Moore (1966) on gallium, who found that
vpn o T® (figure 15).
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Figure 15. (a) Comparison of experimental cr line shape in gallium (two upper curves) with
calculated line shape. w/27 = 3-7x 10 Hz; H parallel to a axis. (b) Dependence
vpn(T') derived from the line widths (from Moore 1966).
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The fact that wr> 1 means that all the measurements of both cr line amplitudes
and widths take place under conditions such that an electron returns repeatedly
to the skin layer. Therefore, if one is not just observing cR in order to determine
the cyclotron mass, but is using it to measure v, it is necessary to orient the mag-
netic field parallel to the sample surface with great accuracy, as otherwise electrons
will fail to return to the skin layer, not because they are scattered but because they
have a drift velocity along the field. The necessary accuracy is sometimes of the
order of 1’ or even better (Moore 1966, Poulsen and Datars 1970). The same
rigorous demands also apply, of course, to the surface of the sample itself.

4.3.3. Retardation effect. The effect of retardation was mentioned above: the
amplitude and line shape of cr are affected by the change in phase of the high-
frequency field during the passage of an electron through the skin layer. The
parameter 7 which characterizes this effect is the square of the ratio of the time an
electron spends in the skin layer (R, 8)"2/v to the period of the high-frequency
field w=! (Drew 1972):

= R, w?d/v2 59
1 n

It increases with increasing frequency as n~ w% (since §~w—" and R, oc w™ for
fixed n) and becomes comparable with unity at frequencies of 10>-1013 Hz. The
presence of retardation effects gives rise to an additional exponential factor of the
type €7 in the expression for the impedance in (55) and also changes the line shape.
It is possible for the cr amplitude and line shape to be determined mainly by
retardation effects and not by a finite relaxation time (Drew and Strom 1970).
The cyclotron mass in (20) is an average property of an orbit, but the quantities
R, and v in (59), which determine the time an electron takes to pass through the
skin layer, refer just to the neighbourhood of the effective point v, =0 on an
extremal orbit. It follows that when the shape of the trajectory is unfavourable
retardation effects can occur at much lower frequencies w x 101°-10t Hz, This
was shown experimentally for cr lines in gallium and indium by Kamgar et al (1972).

4.3.4. Cyclotron resonance at high frequencies. Retardation effects are not the only
difficulty which arises in the interpretation of cr experiments at high frequencies.
The photon energy %w ~ 10 K even at a frequency w/27 ~ 2 x 1011 Hz, and this
means that in CR at frequencies 101-10'2 Hz an electron changes its energy by an
amount greater than 7.

Under these conditions (39)—(41) cannot be used. The energy level scheme for
CR at the fourth harmonic (» = 4) and %iw> T is shown in figure 16. The heavy
lines on the parabolas corresponding to (19) show the electron states from which
upward transitions due to the electromagnetic field can take place. Since the range
of variation of « is large for these states, from 1 to — (RQ/T+1), the linear method
of averaging the value of v, described in §4.1, is clearly no longer applicable.
Instead, we can use the following approach. The width of the resonant line at
transitions is determined by the sum of the widths of the upper and lower levels
taking part in the resonance. Since the collision frequency v, is described by the
symmetrical curve J5(a) (see figure 8), this sum has a minimum when the upper and
lower levels are symmetrically situated with respect to E;. The corresponding
states of the lower level are shown by small circles in figure 16; they lie at the
intersection of the parabolas with the lines E;—E = hw/2. It is natural to assume
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that these electrons make the main contribution to cR and determine the experi-
mentally observed line width (Cheremisin 1972).
It is now possible to analyse the experimental results by using the expression

o _ 1 AT? _(fw
Yo = — — —_ (22
Ph T 4 Rt usto” 2\2T
which tends to (16) for w-—>00. Since J5(«) approximates its asymptotic value o3/3
only for a ~ 10, the temperature dependence of v is preserved to quite large

(60)

y

Figure 16, Energy level scheme for cr at high frequencies (hw > T, w/Q = 4).

values of w. In particular, and in agreement with the experimental results of Goy
and Castaing (1973), shown in figure 17,

[(38°) = (15 gunae = 1°5[(3:8°) = (15 s

4.4. Ultrasonic absorption

A sound wave produces a periodic perturbation to the crystal lattice, which
propagates with velocity s along the sound wave vector p. Electrons moving in the
field of the wave can take energy from it and therefore attenuate it. At low tem-
peratures, when the electron mean free path becomes greater than the sound wave-
length A = 27/p, electron damping becomes dominant. In this case, as in the
anomalous skin effect, there is a Landau damping mechanism: energy is mainly
acquired by those electrons which are moving in phase with the wave ie those whose
velocity v satisfies the equation

v.p=o. (61)
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Since the sound frequency w = ps, but s<v, (61) means that v 1 p. We again
find ourselves with an ‘effective zone’ on the fermi surface, but this time along the
line v.p = 0. In the absence of a magnetic field the width of this zone is of order
ke(pl)~'. In the presence of a field an electron interacts with the wave only in those
parts ot its orbit which are near the intersection with this line. There can be several
such intersection points on an orbit, and the resulting interaction of an electron
with the wave depends on the phase relation of the sound wave at all the effective
points of the electron trajectory. Since the dimensions of this trajectory, the cyclo-
tron frequency and the phase relation are all functions of H, the contribution of each
orbit to the absorption varies with the magnetic field. As always happens in such
cases, both oscillations and individual lines in the absorption are determined by
orbits with extremal parameters.

x10'0 2 456 GHz
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Figure 17. crinlead: frequency vl as a function of T3 at two different frequencies (from Goy
and Castaing 1973).

There is a considerable number of oscillatory effects in the ultrasonic absorption,
due to particular groups of extremal orbits. It is clear from the above that the
methods of measuring v,, from these effects are basically similar to the electro-
dynamic methods which have been discussed in the last two sections.

4.4.1. Geometric oscillations. The best known and most widely studied effects are
the geometric oscillations in the ultrasonic absorption. Each new cycle of these
oscillations corresponds to a value of the field H for which a characteristic dimension
of the electron trajectory is an integral multiple of the sound wavelength (Pippard
1960). It is not difficult to see an analogy between this effect and the RFSE. The
quantity nA (n = 1,2,3,...) corresponds to the plate thickness, and the distance
over which the phase of the wave varies appreciably, which is approximately
Ajm = 2[p, corresponds to the thickness 8 of the skin layer; hence the estimates in
(49) and (50) for the dimensions of the region ¥ become, when expressed in terms
16
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of the cyclotron radius, R, = nA/2,
Agk % k(pRY5; Ak x ky(pR), ke(pR)™ (62)

The quasistatic condition in (45) remains the same; it follows from it that
w <, since Qfv> 1. If the condition in (46) that the electron does not go round the
orbit more than once is also satisfied, then the ultrasonic absorption coefficient for a
quadratic dispersion law is proportional to (Phua and Peverley 1971)

Og ™~ 1+ 2(77'1,‘)]2)_1/2 exp ( - wveﬁ/Q) sin (ZpR — 77'/4) (63)

The first factor in the oscillatory term is the width of the layer of effective orbits
A, k/k;, which is already well known to us, and the second factor, which we have
also met before, is the probability that an electron passes, without being scattered,
from one effective point on the orbit to another.

All the discussion of the physical interpretation of v, in previous sections is also
applicable here; in particular (39)-(41) are valid when the condition in (33) is
satisfied. :

Measurements of v,; from the amplitudes of geometric oscillations of sound
attenuation were reported by Phua and Peverley (1971); the total scattering fre-
quency v,z was determined from the amplitude variation of the sinusoids at a fixed
temperature by plotting In(An') against n (see figure 18; cf (56) and figure 14).
A dependence v, oc T'® was found for copper, but with a coefficient rather less than
that obtained by other methods. The difference is probably because the inequality
in (33) was only just satisfied. It is appropriate here to make the same observation
as in the preceding section: (63), which is similar to (56), enables us to analyse
measurements of A(T") for a fixed oscillation number, and derive v, directly. This
can be a useful check on the results obtained.

4.4.2. Geometric resonance from open trajectories. Just as in RFSE electron trajectories
of various types can give rise to observable features in the sound absorption. The
effect being due to open trajectories the harmonic oscillations are replaced by a
series of narrow maxima in the absorption at fields

H, = Kpcsinyy/2mne  (n=1,2,3,...) (64)

(a reciprocal lattice vector K appears in (64) instead of k;; i, is the angle between
p and the open direction). It was shown by Kaner et al (1961) that the relative
width of these maxima is

AH/H = =Jpl. (65)

The spatial resonance occurs over a field range such that over a distance / the
difference between nA and the displacement of the electron along p in a cyclotron
period, AK = Kcsinyy/He, is not distinguishable. However, the size of the region
T does not depend on the parameter pl: the dimension A, % is simply the width of
the layer of open orbits which have effective points p.v = 0; and A, & is determined
by (62). If the effective point is a point of inflexion on the open trajectory (similar
to the effective points on the trajectory shown in figure 9(d)), then R, which is
essentially the second derivative of the curve x(y) describing the trajectory, is
replaced by the third derivative in the expression for A, k: A,k = (eH[Fic) (px") .
This effect has been used to measure collision frequencies in cadmium (Deaton
:nd Gavenda 1964); they found that v}y oc T4, which shows that the condition in
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Figure 18. (a) Magnetoacoustic oscillations in copper for Pl [110] and H||[001]. w/27 =
165 MHz. (b) Analysis of this data, using equation (63). A4 is the amplitude of the
oscillations. () Dependence vpy(T') (from Phua and Peverley 1971).
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(33) is violated. (Ina later publication (Deaton 1965) it is stated that the dependence
vpn o€ T'® was also observed.)

Electron scattering can be studied not only by spatial resonances, but also by
using space—time resonances such as Doppler-shifted acoustic cr (Stark ez al 1971),
but this possibility has been little studied.

In general ultrasonic absorption also presents other possibilities for the study
of the electron-phonon interaction, since the deformation potential A enters dlrectly
into the absorption coefficient, rather than through factors containing vy, as in (63).
This enables, for example, particular components of the tensor A to be determined
from measurements of the amplitude of giant quantum oscillations in the sound
absorption (Walther 1968). However, a discussion of these topics would lead us
too far from the subject of this review.

R=ﬁkf cleH

i T~

Figure 19. Shape of the classical trajectory corresponding to magnetic surface levels.

4.5. Magnetic surface levels

Near the surface of a metal in a weak magnetic field there exist magnetic surface
levels, associated with electrons skipping along the surface with successive reflections
from it (eg see the review of Khaikin 1968). For a quadratic dispersion law the
energy spectrum of these electrons has the form (Nee and Prange 1967)

Wk, Wk, (3a\B[R2RZ Tk
E(kyk) m g bt (7)[ (nﬁQ)], n=1,23,..  (66)

(for simplicity we do not distinguish here between the cyclotron and the band
masses, putting m* = m, = m; the coordinates are as shown in figure 19; %, is
related to the x coordinate of the orbit centre, which is outside the metal). When
an electromagnetic wave of frequency w satisfying the condition

2 2F N\ Y
w=ay~ (F) (5 mie-ne) (67)

is incident on the metal, resonant transitions conserving k, and k&, take place
between the levels, and these can be observed as narrow lines in the impedance.
In essence the effect is analogous to cyclotron resonance, with the difference that it
takes place atm uch lower magnetic fields of 1 to 10 Oe. The condition w;; 7> 1 that
these lines can be observed has the usual meaning: the separation of levels must
be much greater than their width. This width is determined not only by the usual
electron scattering mechanisms—by impurities, lattice defects and phonons—but
also to a considerable extent by the coeflicient of specular reflection y of electrons
at the surface. For diffusive reflection (y = 0) we would have w;;7~ 1, so the
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observation of narrow lines (see figure 20) means that y ~ 1 for such small angles of
incidence. In general y can be temperature dependent (Gaidukov and Kadletsova
1970), but, judging from the results of Koch and Doezema (1970), this dependence
is unimportant for skipping electrons.
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Figure 20. Dependence vpp(T) for the neck and for the [100] point on the copper fermi
surface. w/27m = 3:6 x 10" s~%. To the right: a comparison between experimental and
theoretical values of dR/0H at 6-6 K for the transition w,, (R is the real part of the
impedance); the zone X is in the neighbourhood of the [100] point of the fermi surface
(from Koch and Doezema 1970).
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The mean distance from the surface of the electrons in which we are interested is

n2fic \'s
%~ (&) ©%)
which is much greater than the wavelength of a thermal phonon 27/gy even at 1 K.
We may therefore expect that the proximity of the metal surface does not affect
collisions with phonons and that the temperature broadening of the quantum levels
is due to collisions with phonons in the volume of the metal (Koch and Doezema
1970).

The effective collision frequency is therefore now made up of three terms

Ver = Vot %T wi(1=y)+vpn (69)
of which only v, is temperature dependent. This enables us to measure v, from
the temperature dependence of the resonance line width (see figure 20).

The dimension A, k of the effective zone is determined by the dispersion of the
parameter (k, /v, )" along the line v, = 0 in the region of its extremum (the subscript
1 means that k and v are resolved perpendicular to the vector H). This parameter
appears in an expression like (54) instead of m,. The dimension A, % is given by the
arc length of the electron orbit: A, & x ky(x,/R)"™.

In the experiments on copper referred to above the angular dimensions A, &
and A,k were estimated to be 6° and 0-5°, respectively. In this case, unlike that
shown in figure 11, the effective zone ¥ does not shift along the fermi surface,
because the values of vy, obtained are averaged only over the small area A, kA, k.

ph
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In this sense, only RFSE and cR from limiting points can rival resonance at surface
levels. In practice, however, RFSE can rarely be observed for angles s $5° (it is only
for tin that RFSE lines from limiting points have been observed down to = 2°).
In limiting point cRr the dimensions of the effective region around the limiting point
are determined by the dispersion of the cyclotron mass:

Y, /02 =Y
Ak = ko Te) ™ AN
wr) \ ok}
This effect has never been studied with the aim of deriving information about v.
The physical interpretation of the parameter v, as determined from resonance
at surface levels, follows the discussion in the section on CR, except that Q, is

replaced by w;;. The discreteness of the electron spectrum can be neglected in
calculations of transitions due to collisions with phonons, provided

hwﬁ < T3/2(ms2)_1/2.

If we also have %w,; < T and the conditions in (33) are satisfied, then (39)—(41) can
be used.

5. Landau quantum oscillations

Of all the methods of studying the shape of the fermi surface which are based on
distinguishing groups of electrons with extremal values of some parameter, the best
known and most widely used method is based on a group of effects which we may
combine under the generic name of Landau quantum oscillations. When the
spectrum is quantized by a high magnetic field H, the thermodynamic and kinetic
properties of a metal are oscillatory functions of the magnetic field, as a consequence
of the fact that the electron Landau levels for sections of extremal area empty
successively as they pass through the fermi level. The period of the oscillations is
determined by the area of the extremal section of the fermi surface, whilst in the
simplest case their amplitude has the form

(70)

A~G(H, T)exp [—w]

RQ

where the parameter W, called the Dingle temperature, is related to the effective
collision frequency vy by

W = Fivgg|2 (71)

and the pre-exponential factor G(H, T') is a known function of powers of T'and H
(eg see the review by Gold 1969).

Recently quantum oscillations have been used more and more for the measure-
ment of relaxation times. The potential of these measurements has been discussed
in detail by Springford (1971), although his review is concerned mainly with
scattering at impurities. This is not accidental. It is clear from (70) that in general
quantum oscillations are not very convenient for investigation of the temperature
dependence of relaxation times, since the dependence A(T) is mainly determined
by the factor exp ( — 2«2 T/hQ) which does not contain the relaxation time. How-
ever, an attempt was made by Palin (1972) to measure the temperature dependence
of W for mercury from the oscillations of magnetic susceptibility (the de Haas—
van Alphen effect). The experiments showed that over the temperature interval
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from 1K to 17K there was no observed deviation from a linear dependence of
In(A4/G) on T (see figure 21); the slope of graphs of In(A4/G) versus 1/H also varied
linearly with temperature. This appears to show that W is independent of
temperature.

The absence of any dependence W(T'), which was found experimentally by
Palin, was explained theoretically by calculations of the oscillatory magnetization of
a system of electrons interacting with phonons (Englesberg and Simpson 1970).
It is kriown that the electron~phonon interaction leads to a renormalization of the
effective mass, and the renormalization coefficient appears, via €, in the argument
of the exponential which determines the amplitude of oscillations. The result of the
calculations can be interpreted as follows: the effect of a change in the scattering
probability with temperature ie a change in the imaginary part of the self-energy of
particles in the electron—phonon system, is compensated in (70) by the change with
temperature of the effective mass (the real part of the self-energy), which enters in
(70) through Q.

Strictly speaking, this result applies only to mercury, since the last step in the
calculations was made numerically, using the parameters for this metal. It is worth
noting that both mercury and lead are metals which contain low-lying phonon
branches. Moreover, the calculations of Englesberg and Simpson refer only to
oscillations of thermodynamic quantities, whilst the kinetic parameters of a metal
also oscillate with magnetic field. It is not clear beforehand whether a similar
compensation will take place in, for instance, the Shubnikov-de Haas oscillations
in electrical resistivity.

In this connection it is worthwhile to consider the ‘traditional’ approach to this
problem, which is based on the idea that the Dingle temperature represents the
collision broadening of a Landau level, and which does not take into account mass
renormalization or its temperature dependence.

We limit ourselves here to some qualitative remarks, based on (25).

The electrons primarily responsible for oscillations are those which lie on a
Landau level at the moment it passes through the fermi level ie those electrons with
k, satisfying (22). The collision frequency for these electrons is given by (25), since
(23), which is the condition for the existence of a region with v,n proportional to H,
is practically the same as the condition Q2 2#2 T that quantum oscillations can be
observed (because m*s? z 0-1 K); at the same time we have k,< gy for all these
electrons, because at helium temperature 7T > m* 2.

The variation v, ~QT™® enables us to explain the results of Palin (1972).
Because vy, ~H, the field H cancels out in the argument of the exponential
exp (— 272 W /hQ), so that electron collisions have no effect on the slope of the
linear dependence of In(4/G) on H- (we are assuming that the Dingle temperature
is of the form W = W+ W,,,; cf (34)). Hence the only hope of determining W, is
from the dependence A(T). However, if W, were directly proportional to T, the
dependence of In(4/T) on T would still be linear and collisions with phonons
would lead merely to a small change in the slope of the straight line, equivalent to a
renormalization of the effective mass. Hence, any deviation expected from a linear
dependence of In(4/G) on T is due to the difference from unity of the exponent
of the temperature in (25), and this difference is very small.

From the estimate given by Palin we would expect W, ~ 0-4° at T' = 4 K and by
assuming that W, oc 7% we can plot values of 22 W,,/RQ below the experimental
points of the lower curve (H = 20 kOe) in figure 21. It is clear that the crosses thus
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obtained fit a straight line as well as do the initial points. This means that the
experimental accuracy is not sufficient to determine the expected deviations from
linearity.

In A/G

7 (K)

Figure 21. Graphs of the temperature dependence of the B oscillations in mercury. The size
of the circles gives a rough idea of the experimental errors. The value of the magnetic
field in kOe is shown by each straight line (from Palin 1972). The result of subtracting
272 Wn/hQ, varying as T (Wpn (4K) = 0-4 K), from the experimental points of the
lowest line is shown by +.

The observation of these collisions from the amplitude of quantum oscillations
is thus a very difficult experimental problem, despite the fact that for an extremal
section of the fermi surface in a high magnetic field the frequency of electron—
phonon collisions vy, is (AQ) (m* s2)"2 T-* times greater than in the absence of a
field (the dependence in (25) instead of the usual 7°%).

6. Experimental results

In conclusion we carry out a brief review of the presently available experimental
results for the electron—phonon scattering probability in metals. In this we have in
mind the total scattering probability referring to well defined regions of the fermi
surface, so that we shall discuss only results obtained from kinetic effects referring
to extremal trajectories. The results of these experiments in which it was possible
to satisfy the condition in (33) and obtain a value of 7 < 3 in the temperature depen-
dence v, = BT are collected in tables 1 and 2.

6.1. Quadratic dependence of v(T)

6.1.1. Bismuth. When the dependence (voz—v,)~ T2 is found experimentally, the
question arises as to whether this quadratic dependence is due to electron—electron
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collisions, whose frequency is known to vary as v, oc T'? (Ziman 1960). The follow-
ing points are relevant to bismuth. Its electron fermi surfaces are elongated ellipsoids
and the inequality in’(14) is well satisfied for these at helium temperatures. Esti-
mates from (40), using values of the deformation potential from independent
experiments (Walther 1968), give a value v{{fee® which is even a factor of two or
three larger than that observed experimentally in the RFse.t We may conclude
from this that the observed dependence vo(T') is due to phonons, because otherwise
we would have to ask why collisions with phonons were not observed. On the
other hand, a number of authors note that a quadratic dependence is also observed
in the temperature range 5-10 K, where the right-hand inequality in (14) no longer
holds (%kys = 8 K), so that phonon scattering should already have produced a
linear dependence. The assumption that vz —v, is due to phonons is also confirmed
by the dependence of the coefficient of the temperature-dependent part of the
electrical resistivity on carrier concentration in bismuth-antimony alloys (Fenton
et al 1969). The observed variation p— p, cc T2 for the temperature dependence
of the electrical resistivity of bismuth itself agrees with this assumption, because
vy = vpp in view of (14).

A quadratic dependence of v,z—v, for electrons in bismuth has also been
observed in CR, but the coefficient § in these experiments was 2-3 times greater than
in ResE. We have already seen that B can increase with increasing frequency (for
~ instance, in lead, see §4.3.4); however, this increase in bismuth begins at too low a
frequency. This is clearly associated with some peculiarity of the electron spectrum
in bismuth, but just what is not yet known.

6.1.2. Antimony. Here the left-hand inequality in (14) is no longer satisfied, for
both hole and electron ellipsoids, and we have ky; ~ gp<ky. Antimony should
therefore fall into the intermediate region between T2 and T'3; however, as in bis-
muth we find that »{{heo? < (ve—v,), which gives grounds for thinking that the
measured quantity is due just to collisions with phonons.

6.1.3. Small groups in other metals. The results for gallium are very curious. As
can be seen from table 2, v, varies as T2 for a section with large k; (cyclotron mass
m, = 0-9m,), but for a section with k; = 0-01 A-1, which is four times smaller than
that for antimony, vy, varies as T2 Tt is very difficult here to bring in the electron—
electron interaction. (In the electrical resistivity of gallium p—p,oc T'%, since its
conductivity is mainly determined by large pieces of the fermi surface.) Thus a
phonon scattering frequency proportional to 1'% has already been observed for three
metals with small groups of carriers. The example of gallium shows that a quad-
ratic dependence vy, (T) probably also holds for small pieces of the fermi surfaces
of other metals, where (14) is valid, and these pieces may be topologically connected
to large surfaces, for instances, we may have a long narrow neck joining two surfaces.

A linear dependence v,,(T) has so far been observed only in the electrical
resistivity. The fermi surfaces of all known small pockets in metals are very
elongated, and in attempts to satisfy the condition in (12) by raising the temperature
one finds that first, the kinetic effects themselves disappear because of the small

+ In the formulae in the paper by Gantmakher and Dolgopolov (1971), where this question
is also discussed, a factor of 2 is missing, compared to (39) and (40), because they took account
only of the rate at which electrons leave the state k. Taking account of the rate at which elec-
trons are scattered into the state doubles the value of vy for the same value of A
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electron mean free path, and secondly, Umklapp processes to other pieces of fermi
surface begin to occur from the pocket being studied, which in this case must be
topologically separate. However, the variety of known fermi surfaces is continually
increasing, because of the many metallic compounds, so that it is quite likely that it
may be possible to find a suitable material for the observation of a linear dependence
of v,,,(T) for a particular electron pocket.

6.1.4. Molybdenum. A quadratic dependence of »(T') is also observed for molyb-
denum, over nearly all the fermi surface. The electrical resistivity of these metals
also gives p—pg~ T2 The ‘geometrical’ explanation based on (14) and (15) is
clearly not applicable here. It is usually considered that the electron—electron
collision frequency in transition metals is much higher than that in simple metals,
and this is based on the assumption that there is a narrow d-band with a high density
of states, which serves more or less as a trap for electrons. However, the fermi
surface of molybdenum is well known (Boiko et al 1969) and by comparison with
the theoretical calculations of Loucks (1965) it is clear that all pieces of the surface
are seen experimentally, whilst the cyclotron resonance measurements (Herrmann
1968) show that there are no regions with high effective masses ie there is no
narrow d band. Neither the fermi surface area nor the velocity distribution on the
surface gives grounds for expecting it to have a larger frequency v, than for simple
metals.

It could be suggested that the electron—electron interaction is observed in
molybdenum not so much because of the high value of the frequency v, but more
because of the low value of the frequency v, as a consequence of the high Debye
temperature 7;,. However, this hypothesis is clearly not justified, because in
copper, which also has a high Debye temperature, v,g—v, oc 7. Thus the depen-
dence v —v, oc T'% observed for molybdenum has not yet found any consistent
explanation, although it seems almost obvious that any such explanation must be
based on the fact that this is a transition metal.

6.2. Anisotropy

The majority of the experiments quoted in tables 1 and 2 were undertaken with
the aim of either determining the exponent in the dependence of vpn(T') or demon-
strating the usefulness of a particular method for determining the total phonon
collision frequency. However, for a number of metals—antimony, indium and
especially copper—more or less systematic results for the dependence of vpn(k) are
available.

6.2.1. Antimony. The dimensions of the fermi surfaces in antimony satisfy k, < K.
The scalar deformation potential A(k) used in (10) and (15) can then be regarded as
constant on each of these surfaces. The ratio of these constants for the electron and
hole surfaces is |A, |/|A,| ~ 1-5. By using an ellipsoidal model we can draw some
conclusions about the variation of v, over the fermi surface itself. In the central
region of the ‘ellipsoids’ v, must vary very slowly, as does the mean value of the
fermi velocity in the neighbourhood of this point. Indeed, it was not possible to
observe experimentally any change in the average value of the collision frequency,
even for angles as large as 70° between the field H and the ellipsoid axis. On the
other hand, the change in v, at the ends of the ellipsoids can be considerable, since
v; oC ky;~! along the major axes of the ellipsoids. The difference between the mean
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free paths is even larger: I, = v;/v,, ~ky 2 For example, in bismuth, where
knax/kmin ~ 14 for the electrons, the ratio /Mex/Imin can reach 200. This ratio in
antimony is approximately 30 for electrons and 10 for holes. (In these estimates, of
course, neither the anisotropy of the phonon spectrum nor the k dependence of the
region of integration in (15) is taken into account.) The smallness of /X" is probably
the reason why it is so difficult to observe effects from extremal sections passing over
the long axis of the ellipsoids.

6.2.2. Indium. It should be noted that conclusions drawn from an ellipsoidal
model with a value of A independent of k and an isotropic phonon spectrum should
be used with caution. It would seem that the frequency v, should also be constant
in indium for the spherical parts of the hole surface in the second zone, where the
velocity » is practically constant in magnitude. However, according to the measure-
ments of Snyder (1971), the frequency v, is strongly dependent on the angle x
between the vector k and the [111] direction, and over a 15° interval it is given by
the expression
) vpn = 107 (1-24-0-023x%) T3

(x is in degrees, and T in K). This means that the frequency v, is increased
approximately fivefold at the edges of this 15° region compared with its value at the
centre, in the [111] direction. (The measurements were made using the RFSE from
a limiting point, so that the extremal orbit was completely contained within the
spherical cup for all directions of the field.) It seems most natural to suppose that
such a rapid dependence is associated with anisotropy of the phonon spectrum but
this suggestion has not been numerically analysed.

6.2.3. Copper. The most detailed measurements of the electron-phonon collision
frequency have been made for copper. These measurements are important from
two points of view.
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Figure 22. Dependence vpy(k) for the fermi surface of copper in the (100) and (110) planes.
The open circles are from measurements by Doezema and Koch (1972), using surface
levels; the vertical lines are results from Gantmakher and Gasparov (1973), obtained
from RFSE.
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First, copper is so far the only metal for which the function vpn(k) has been
measured over the whole fermi surface. The measurements for copper are all the
more valuable because a theoretical calculation of v (k) was made by Novak (1972).
The results of measurements by Doezema and Koch (1972) from the shape of
resonance lines due to surface levels are shown by points in figure 22, whilst the
vertical bars show the results obtained by Gantmakher and Gasparov from the
RFSE. These are calculated from measured values of {vpn, (see equation (52)) for
various extremal orbits, the network of which gave sufficiently close coverage over
the whole fermi surface. (For the mathematical details see the above reference, and
also Springford (1971) and Bosacchi et al (1972).)

The value of the experiments on copper is also that all the methods discussed
here have been applied. The agreement of the results can be regarded as experi-
mental confirmation of the correctness of the concepts used.

Acknowledgments

The author is grateful to Y B Levinson, E A Kaner, R N Gurzhi and V T
Dolgopolov for valuable discussions and important comments.

References

References to English translations of journals in Russian are given in parentheses after the
reference to the Russian original.

AKHIEZER A J 1938 ZRETF 8 1330-9

Azer” M Ja and Kaner E A 1958 ¥. Phys. Chem. Solids 6 113-35

BLaNEY T G and Parsons D 1970 ¥. Phys. C: Solid St. Phys. 3 12637

Boiko V V and Gasparov V A 1971 Metallofizika (Kiev: Naukova Dumka) 37 11-5

Boiko V V, Gasparov V A and GverpTsiTELI I G 1969 ZEETF 56 489-500 (Sov. Phys.—
JETP 29 267-73)

Bosaccki B, KETTERSON J B and WiNDMILLER L. R 1972 Phys. Rev. B 5 3816-8

CapLiN A D and Rrzzuro C 1971 Austral. §. Phys. 24 309-16

CuamBers R G 1965 Proc. Phys. Soc. 86 305-8

CHEREMISIN S M 1972 ZhETF Pis'ma 16 186-90 (Sov. Phys.—JETP Lett. 16 131-34)

CHEREMISIN S M, EpeELMAN V S and KHAIKIN M S 1971 ZRETF 61 1112-19 (Sov. Phys.—
JETP 34 594-7)

DeatoN B C 1965 Phys. Rev. 140 A2051-5

Deaton B C and Gavenba J D 1964 Phys. Rev. A 136 1096-101

Dorzma R E and KocH J F 1972 Phys. Rev. B 6 2071-77

Drew H D 1972 Phys. Rev. B 5 360-6

Drew H D and Strom U 1970 Phys. Rev. Lett. 25 1755-8

DruyvesTeIN W F and SMmeTts A J 1970 . Low Temp. Phys. 2 619-30

ExiN J] W and MaxrieLp B W 1971 Phys. Rev. B 4 4215-25

ENGELSBERG S and SimpsoN G 1970 Phys. Rev. B 2 1657-65

Fenton E W, Jan J-P, KarLssoN A and SINGLER R 1969 Phys. Rev. 184 663-7

Gamukov Ju P and KapLecova Ja 1970 ZRETF 59 700-11 (Souv. Phys—¥ETP 32 382-8)

GanTMAKHER V F 1967 Progr. in Low Temp. Phys. 5 ed C J Gorter (Amsterdam: North-
Holland) pp181-234

—— 1972 ZRETF Pis’ma 16 256-9 (Sov. Phys.—5¥ETP Lett. 16 180-82)

GantMAKHER V F and DorcoporLov V T 1971 ZRETF 60 2260-8 (Sov. Phys.—YETP 33
1215-9)

GANTMAKHER V F and Gasparov V A 1972 ZRETF 64 1712-23 (Sov. Phys.—¥ETP 37)

GANTMAKEER V F and Lronov Ju S 1968 ZAETF Pis'ma 8 264—7 (Sov. Phys—JETP Lett.
8 1624)

GaNTMAKHER V F and SHarRVIN JU V 1965 ZRETF 48 1077-80 (Sov. Phys.—YETP 21 720-2)



362 V F Gantmakher

GoLp A V 1969 Solid State Physics vol 1 Electrons in Metals eds J F Cochran and R R Haering
(New York: Gordon and Breach) pp39-126

GoY P and CastaiNG B 1972 Phys. Rev. B 7 4409-524

Goy P and WeisBucH G 1969 Phys. Kondens. Materie 9 200-7

GurzHI R N 1968 Usp. Fiz. Nauk 94 589-718 (Sov. Phys.—Uspekhi 11 255-70)

Gurzai R N and KopeLovicH A J 1971 ZhETF 61 2514-29 (Sov. Phys—5FETP 34 1345-52)

HaserLanD P H and SuiFFMan C A 1967 Phys. Rev. Lett. 19 1337-41

HatssLER P and WELLES S J 1966 Phys. Rev. 152 675-82

HEeINE V 1957 Phys. Rev. 107 431-7

HerRrRMANN R 1968 Phys. Stat. Sol. 25 427-35

Kacgan Ju and Zuernov A P 1971 ZRETF 60 1832-44 (Sov. Phys.—YETP 33 990-6)

Kamcar A, HENNINGSEN J O and Kocu J F 1972 Phys. Rev. B 6 342-7

KaNer E A and Azsel’M Ja 1957 ZRETF 33 1461-71 (Sov. Phys.—YETP 6 1126-34)

Kaner E A and GaNntMARHER V F 1968 Usp. Fiz. Nauk. 94 193-241 (Sov. Phys.—Uspekhi 11
81-106)

Kaner E A, Pescuanskilt V G and PrivoroTskii J A 1961 ZRETF 40 214-26 (Sov. Phys.—
JETP 13 147-55)

Kuaikin M S 1968 Usp. Fiz. Nauk 96 40940 (Sov. Phys.—Uspekhi 11 785-801)

KrLeMENS P G and JacksoN J L 1964 Physica 30 2031-40

KocH J F and Doezema R E 1970 Phys. Rev. Lett. 24 507-10

KRrasNoPOLIN J Ja and KHAIRKIN M S 1970 ZRETF Pis’ma 12 76-9 (Sov. Phys—JETP Lett.
12 54-6)

KryLov I P and GaNtMAKBER V F 1966 ZRETF 51 740-5 (Sov. Phys—YETP 24 492-5)

Loucks T L 1965 Phys. Rev. A 139 1181-8

MacDonaLp D K C 1956 Handbuch der Phys. 14 ed S Fliigge (Berlin: Springer-Verlag)
pp137-97

Moore T W 1966 Phys. Rev. Lert. 16 581-3

MyeRrs A, PorTER S G and THompsoN R S 1972 ¥. Phys. F: Metal Phys. 2 24-37

NaBEREZHNYKH V P and Tsymear L T 1967 ZRETF Pis’ma 5 319-22 (Sov. Phys—JETP
Lett. 5 263-5)

NaBerezuNYKH V P, TsymsaL L T and PurcuiNskit M S 1971 Phys. Stat. Sol. B 44 845-8

NEee T W and Prance R E 1967 Phys. Lett. 25 A 582-3

NEIGHBOR J E, SHiFFMaAN C A, CHATJIGIANNIS D G and JacoBseN S P 1971 Phys. Rev. Lett.
27 929-32

Novak D 1972 Phys. Rev. B 6 369199

PaLiN C J 1972 Proc. R. Soc. A 329 17-34

PeierLs R E 1955 Quantum Theory of Solids (Oxford: Clarendon Press)

Puua M S and PeverLEY ] R 1971 Phys. Rev. B 3 3115-20

PrrparD A B 1960 Rep. Prog. Phys. 23 176-266

1964 Proc. R. Soc. A 282 464-84

—— 1968 Proc. R. Soc. A 305 291-318

PouLseN R G and Datars W R 1970 Sol. St. Commun. 8 1969-73 ,

SHARVIN Ju V and BocatiNa N J 1969 ZRETF 56 772-9 (Sov. Phys.—JETP 29 419-23)

Snyper P M 1971 ¥. Phys. F: Metal Phys. 1 363-72

SPRINGFORD M 1971 Adv. Phys. 20 493-550

Stark R W, TRrivisoNNO J and ScHwarz R E 1971 Phys Rev. B 3 2465-76

Tso1 V S 1969 Fiz. Metall. 28 565-7 (Sov. Phys.—Phys. Metal. Metallogr. 28)

Tsor V S and GaNTMakuER V F 1969 ZRETF 56 1232-41 (Sov. Phys—JETP 29 663-8)

WaLTHER K 1968 Phys. Rev. 174 782-90

Young R A 1968 Phys. Rev. 175 813-23

ZIMAN J M 1960 Electrons and Phonons (Oxford: Clarendon Press)

——— 1964 Principles of the Theory of Solids (L.ondon: Cambridge University Press)

——— 1969 (ed) The Physics of Metals—I1 Electrons (London: Cambridge University Press)
pp1-249






