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Comparative study of magnetic quantum oscillations in Hall and transverse magnetoresistance
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Magnetic quantum oscillations (MQO) provide a common tool to probe the electronic structure of various
conductors. The Fermi surface of most metals is now known due to the MQO. This tool is more precise than
its alternatives, but requires low temperatures, clean samples and rather strong magnetic fields. In this paper the
MQO of Hall coefficient are measured in rare-earth tritelluride TmTe3 and shown to be much stronger and persist
to higher temperature than the Shubnikov-de Haas oscillations. This amplitude enhancement simplifies the MQO
experiments and is very general in strongly anisotropic metals. The combined measurements of Hall and diagonal
magnetoresistance provide additional useful information. The ratio of their MQO amplitudes depends linearly on
magnetic field, and its slope gives a simple and accurate measurement tool of the electron mean free time and its
temperature dependence, unachievable from the usual Dingle plot. Our results expand the use and applications
of MQO as a powerful tool to investigate the electronic structure.

DOI: 10.1103/PhysRevB.110.L161108

The Landau quantization of electron spectrum in mag-
netic fields leads to the magnetic quantum oscillations (MQO)
in metals [1–3]. Usually, the MQO are observed in mag-
netoresistance, called the Shubnikov-de Haas effect (ShdH),
and in magnetization, called the de Haas-van Alphen effect
(dHvA). These quantities are measured as a function of the
inverse magnetic field and display a periodic behavior. The
period is given by the extremal cross section of the Fermi
surface (FS) encircled by conducting electrons in a semi-
classical picture. The amplitude of the MQO is given by
the well known Lifshitz-Kosevich (LK) formula [4]. This
formula gives the relation between the MQO frequency and
FS, and describes the MQO damping by thermal and disorder
broadening. Fitting the experimental temperature dependence
of MQO amplitude by the LK formula gives the effective
electron mass m∗, while the field dependence of MQO ampli-
tude gives the Landau-level (LL) broadening [1]. The MQO
measurements provide a powerful tool to study the electronic
properties of various quasi-two-dimensional (Q2D) layered
metallic compounds which are the subject of intense studies
now: organic metals [5,6], cuprate and iron-based high-
temperature superconductors [7–14], heterostructures [15,16],
graphite intercalation compounds [17], various van-der-Waal
crystals [18], topological semimetals [19,23], etc.

Usually, only the diagonal component of magnetoresis-
tance tensor is used to measure the MQO and to study the
electronic structure, although the MQO of nondiagonal Hall
component in some compounds may be much stronger and
observable in a wider range of temperature, as it was reported
for semiconductors [20]; semimetals HgTe and HgSe [21,22];

topological semimetals [23]; metal pentatellurides ZrTe5 and
HfTe5 [24]; charge-density wave semimetal NbSe3 [25]; and
anomalous Hall resistance [26,27]. The MQO in the hole-
doped high-Tc cuprate superconductors, giving new important
knowledge about these compounds, were also first discovered
measuring the Hall resistance [7]. When our paper was pre-
pared, the MQO of Hall magnetoresistance component were
also measured [28] in some rare-earth tritelluride compounds
and found to be considerably larger than the MQO of diagonal
component and more convenient for data analysis. However,
one needs to know when this effect appears and how to use
it properly. Therefore, it is interesting to compare the MQO
of diagonal and Hall magnetoresistance components and to
analyze what additional useful information it gives about the
electronic structure. For this purpose we choose a Q2D com-
pound TmTe3 from the rare-earth tritellurides family which
also demonstrates the effect of strong MQO in Hall resistance
as it will be shown below.

Compounds of family RTe3 (R = Y, La, Ce, Nd, Sm, Gd,
Tb, Ho, Dy, Er, Tm) have weak orthorhombic structure (space
group Cmcm) in the normal state [see Fig. 1(a)]. These sys-
tems exhibit a c-axis incommensurate charge-density wave
(CDW) at high temperature through the whole R series that
was recently a subject of intense studies [29–34]. For the
heaviest rare-earth elements, a second a-axis CDW occurs
at low temperature. MQO in RTe3 compounds have been
studied in works [28,35–39]. It was shown [39] that in RTe3

compounds with the double CDW several small Fermi-surface
pockets survive with a very small effective mass and with
the largest area occupying only around 0.5% of the Brillouin

2469-9950/2024/110(16)/L161108(7) L161108-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7901-1471
https://orcid.org/0000-0002-4125-1215
https://orcid.org/0000-0003-1743-8722
https://orcid.org/0000-0002-2857-7587
https://ror.org/02dyaew97
https://ror.org/03xjwb503
https://ror.org/00z65ng94
https://ror.org/019vsm959
https://ror.org/05gbyky62
https://ror.org/00ezjkn15
https://ror.org/02rx3b187
https://ror.org/04dbzz632
https://ror.org/04dbzz632
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.L161108&domain=pdf&date_stamp=2024-10-16
https://doi.org/10.1103/PhysRevB.110.L161108


A. A. SINCHENKO et al. PHYSICAL REVIEW B 110, L161108 (2024)

FIG. 1. (a) Crystal structure of RTe3 compounds. (b) Temper-
ature dependence of resistivity of TmTe3 along the a and the c
-axis directions and conductivity anisotropy, ρa/ρc, in the a-c plane.
(c) Magnetoresistance, Rxx , and (d) Hall resistance, Rxy, in TmTe3

as a function of magnetic field, B perpendicular to the (a-c) plane,
at various temperatures in the range 5-50 K. (e) and (f) show the
corresponding FFT.

zone. TmTe3 is a member of the RTe3 family with the heavi-
est rare-earth element and demonstrates the lowest transition
temperature TCDW1 = 250 K of the first high-T CDW and the
highest transition temperature TCDW2 = 190 K of the second
low-T CDW [31]. Hence, TmTe3 is most convenient for the
comparative study of MQO in Hall and diagonal magnetore-
sistance because one may expect the appearance of MQO at
not too strong magnetic field and at rather high temperature.

Single crystals of TmTe3 were grown by a self-flux
technique under purified argon atmosphere as described pre-
viously [32]. Thin single-crystal samples with a rectangular
shape and with a thickness typically 1-2 µm were prepared
by micromechanical exfoliation of relatively thick crystals
glued on a sapphire substrate. RTe3 compounds are quite
sensitive to air, so the crystals should be stored in an oxygen-
and moisture-free environment and all manipulation with the
crystals in air should be done during minimal time. Be-
cause of this feature the electrical contacts were prepared by
cold soldering of In. The magnetic field was applied parallel
to the b axis, and in-plane magnetoresistance and the Hall
resistance were recorded using the van der Pauw method
[40], sweeping the field between +10 and −10 T. Measure-
ments were performed at fixed temperature in the temperature
range 4.2-100 K. Magnetic field dependencies of resistance
and Hall resistance were determined as (V (+B)±V (−B))

2I tak-
ing (+) for magnetoresistance and (−) for Hall resistance
correspondingly. Conductivity measurements were performed
using the Montgomery technique [41,42]. Electric transport

characteristics of the structures were measured using a Keith-
ley 2400 precision current source and a Keysight 34420A
nanovoltmeter. All measurements were carried out in an inert
helium atmosphere.

Figure 1(b) shows the temperature dependence of resis-
tivity of TmTe3 measured along the in-plane c and a axes
together with the anisotropy ratio ρa/ρc in the conducting
ac plane using the Montgomery method. Above the Peierls
transition temperature TCDW1 = 270 K the studied compound
is practically isotropic in the ac plane and ρa/ρc ≈ 1. Below
TCDW1 the ratio ρa/ρc strongly increases in agreement with
Ref. [33]. Below the second CDW transition temperature the
resistivity anisotropy decreases, and at T < 80 K it becomes
less than 5%. In this temperature range the compound can be
considered as nearly isotropic in (ac) plane.

Figures 1(c) and 1(d) show the diagonal Rxx and Hall
Rxy transverse magnetoresistance components in TmTe3 as a
function of magnetic field B at various temperatures T in the
range 5-50 K. The MQO of Rxy are much more pronounced
than of those of Rxx. Panels (e) and (f) demonstrate the cor-
responding Fourier transforms (FFT) in the window 3-9 T for
MQO of resistivity components ρxx and ρxy. The MQO with
frequency F = 15 T clearly manifest in both the diagonal and
Hall magnetoresistance. However, the MQO of Hall resistivity
are much stronger and observable till considerably higher
temperature in accordance with results of work [28].

The temperature dependence of MQO amplitude A(T, B)
is used to extract the effective electron mass m∗, and its field
dependence gives the Dingle temperature TD = h̄/2πkBτ , re-
lated to the electron mean free time τ , where kB = 1.38 ·
10−16 erg/K is the Boltzmann’s constant. In 2D metals
the amplitude of MQO is described by modified Lifshitz-
Kosevitch formula [43]:

A(T, B) ∝ RT (T, B)RD(B), (1)

where the temperature damping factor

RT = RT (T, B) = λ

sinh(λ)
, λ ≡ 2πkBT

h̄ωc
, (2)

ωc = eB/m∗c is the cyclotron frequency, e is the electron
charge, and c is the light velocity. The damping of MQO by
disorder is described by the usual Dingle factor

RD = exp

(
−2π2kBTD

h̄ωc

)
= exp

(
− π

ωcτ

)
. (3)

The magnetic oscillations of diagonal and Hall magne-
toresistance at different temperatures are shown in Figs. 2(a)
and 2(b) correspondingly. To determine the amplitudes of
oscillation at F = 15 T more accurately, especially at high
temperature, we used the bandpass filtering in square window
between F1 = 10 T and F2 = 20 T for all the temperatures.
Then, applying the inverse Fourier transformation [44,45] we
succeeded to trace the amplitude of oscillation in a wider
range of magnetic field. Figure 2(c) demonstrates the temper-
ature evolution of MQO amplitudes. The MQO amplitude Axx

of the diagonal magnetoresistance (blue symbols) is well fitted
by the Eq. (1) (blue solid lines) with the best-fit value m∗

α =
0.033me. The low ShdH frequency and very small effective
mass indicate the existence of small FS pockets with very
light carriers in these compounds at low T in agreement with
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FIG. 2. Temperature evolution of the MQO of magnetoresistance
(a) and of Hall resistance (b) in TmTe3 for F = 15 T. (c) The tem-
perature dependence of the amplitude of Shubnikov oscillations for
F = 15 T (blue symbols) and the corresponding Lifshitz-Kosevitch
fits (blue solid lines). Red squares indicate the temperature depen-
dence of MQO amplitude of the Hall resistance. (d) The Dingle plots,
ln(A sinh(λ)/λ)(B−1), for the MQO of diagonal magnetoresistance
ρxx at the same temperatures. (e) The magnetic-field dependence of
the ratio of MQO amplitudes, Axx/Axy, at various temperatures. Inset
shows the corresponding temperature dependence of the scattering
rate, 1/τ (T ).

Ref. [39]. At the same time, the temperature dependence of the
oscillation amplitude Axy of Hall resistance, indicated by red
squares in Fig. 2(c), cannot be described by the same formula
because Axy decreases much slower than Axx as temperature
grows and the MQO of ρxy are observable up to much higher
temperatures.

The Dingle temperature and the scattering time are, usu-
ally, extracted from the so-called Dingle plot that is the
logarithm of MQO amplitude divided by a thermal damping
factor (2), RT = λ/ sinh(λ), plotted as a function of inverse
magnetic field, 1/B. The corresponding Dingle plots for the

MQO of ρxx are shown in Fig. 2(d) at various temperatures.
We see that these plots and their slope change strongly as
temperature increases. The Dingle temperature extracted from
the slope of these curves at T = 5 K is equal to TD ≈ 13.4 K,
while at T = 25 K it decreases to TD ≈ 5.9 K. Of course, this
strong decrease of TD(T ) is not physical and appears from
the incorrect use of Eqs. (1) and (2) beyond their applica-
bility region. As we argue below, one may use the value TD

extracted only at low temperature. The corresponding scatter-
ing times extracted from the Dingle plot at low T = 5 K is
τα = (0.90 ± 0.07) · 10−13 seconds.

The MQO of magnetoresistance in two-dimensional (2D)
electron systems for low/intermediate magnetic fields were
theoretically studied in Ref. [46]. According to this work,
the MQO should be observable both in diagonal and Hall
magnetoresistance components, and for one-band 2D metals
they are given by simple formulas:

ρxx = 1

σ0

(
1 + 2

	g(T )

g0

)
, (4)

ρxy = ωcτ

σ0

(
1 − 1

(ωcτ )2

	g(T )

g0

)
, (5)

where in a weak magnetic field, when high harmonics of
MQO are small,

	g(T )

g0
= −2 cos

(
2πεF

h̄ωc

)
RDRT (6)

is the oscillatory part of the density of states (DoS), multiplied
by the temperature damping factor RT , εF is the Fermi energy,
and the damping factors RD and RT are given by Eqs. (3)
and (2). Equations (4)–(6) were recently generalized [47,48]
to layered quasi-2D metals (see Eqs. (57)–(60) of Ref. [47])
and shown to be valid in the main (first) order in the Dingle
factor RD even at finite interlayer electron transfer integral tz
if the oscillating DoS in Eq. (6) is multiplied by the additional
factor J0(4πtz/(h̄ωc)) typical to quasi-2D metals, where J0(x)
is the Bessel function of zeroth order. According to Ref. [31]
the conductivity anisotropy along and across the conducting
layers in TmTe3 and other rare-earth tritellurides at low T is
larger than 102. Hence, the use of quasi-2D model is justified
in our case.

Equations (4) and (5) are derived using the Feynman di-
agram technique in a quantizing magnetic field, namely, the
Kubo and Kubo-Streda formulas (see Refs. [46,47] for more
details). They are quite simple because they are obtained in
the first order of MQO amplitude and for single-band metals.
The first limitation is, usually, justified when the first MQO
harmonic is much stronger than higher harmonics, but the
second condition is often not fulfilled. Unfortunately, the sim-
ilar calculation for multiband metals is rather cumbersome.
We performed the similar calculation using the Kubo and
Kubo-Streda formulas for two-band metals with close cy-
clotron frequencies ωc [49]. When two Fermi-surface pockets
are of the same type (both electron or both hole-type), the
single-band result is confirmed by these calculations. When
the carrier types differ (electrons and holes), the structure
of Eqs. (4) and (5) does not change, but the coefficients
before the oscillating and nonoscillating terms in the round
brackets do change. The latter is not surprising because the
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nonoscillating part of Hall coefficient contains a difference
of the contributions from electrons and holes. The detailed
formula depends on the electron density and dispersion in
the electron and hole pockets, as well as on the difference
between intra- and intersubband electron scattering. Typically,
the MQO amplitude Axy of Hall resistivity get even more en-
hanced as compared to Axx than in Eqs. (4) and (5). Therefore,
the main conclusions from Eqs. (4) and (5) about the larger
amplitude and weaker temperature dependence of magnetic
quantum oscillations of Hall magnetoresistance components
as compared to the diagonal one remains valid in multiband
metals.

Now the fact that the observed MQO in Hall resistance ρxy

are stronger and observable up to much higher temperatures
than the MQO of ρxx is not surprising because it directly
follows from Eqs. (4) and (5). Indeed, in contrast to MQO of
ρxx the amplitude Axy of MQO in ρxy is inversely proportional
to τ0, which should decrease as the temperature grows because
the electron levels become broadened not only by static crystal
disorder but also by thermal excitations due to the electron-
phonon (e-ph) and electron-electron (e-e) interaction.

We now emphasize another interesting point: Equations (4)
and (5) predict a very simple formula for the ratio of MQO
amplitudes,

	ρxx/	ρxy = 2ωcτ = 2eBτ/(m∗c). (7)

Hence, plotting the ratio 	ρxx/	ρxy as a function of magnetic
field B one obtains a linear dependence with a slope equal
to 2eτ/(m∗c). Figures 2(a) and 2(b) show the magnetic-field
dependence of the relative MQO amplitudes 	ρxx/ρ̄xx and
	ρxy/ρ̄xy obtained from the inverse Fourier transformation,
where ρ̄xx and ρ̄xy are nonoscillating parts of diagonal and Hall
magnetoresistivity correspondingly.

The Hall-resistivity oscillations are almost in antiphase
to magnetoresistance oscillations [see Figs. 2(a) and 2(b)],
which corresponds to the theoretical prediction [46,47] in
Eqs. (4) and (5). In Fig. 2(e) the ratio of the absolute val-
ues of MQO amplitudes, 	ρxx/	ρxy, as a function of B
are shown at various temperatures. We see that these de-
pendencies are linear at all temperatures in agreement with
Eq. (7). The scattering time obtained using Eq. (7) from the
slope of this curve at T = 5 K is τ = (0.99 ± 0.09) · 10−13 s,
which coincides with the scattering time τα = (0.90 ±
0.07) · 10−13 s extracted from the Dingle plot at the same
temperature.

The above results suggest a new and elegant method
to determine the electron scattering time τ using the ratio
between the MQO amplitudes of diagonal and Hall magne-
toresistivity. To check the applicability region of the proposed
method we apply it at higher temperatures and compare with
other common methods. As we noted before, the Dingle
plots at T > 10 K demonstrate an unrealistic behavior. For
T = 5, 10, 15, 20, 25 K these plots are shown in Fig. 2(d),
where all these graphs are almost linear but with a slope
that continuously decreases with increasing temperature. This
corresponds to the decrease of scattering time τ (T ) with in-
creasing temperature, which is unphysical and indicates that
the L-K formula (1),(2) for the temperature dependence of
MQO amplitude does not hold. At T = 5 K the tempera-
ture damping factor RT is only a small correction that does

not affect the Dingle plot. Hence, the extracted Dingle tem-
perature TD = 13.4K and the corresponding mean-free time
τα ≈ 0.9 · 10−13 s are reasonable. However, at higher temper-
ature even small violations of the L-K formula (1) change
dramatically the final Dingle plot and spoil the common
method of determining τ from the Dingle plot. The precise
temperature dependence of MQO amplitude, required for a
correct Dingle plot at finite T , needs a more detailed theoret-
ical study and calculations, which are beyond the scope our
paper.

In contrast, we can extract the scattering time τ at high
temperature from the ratio 	ρxx/	ρxy. The dependence of
this ratio on magnetic field B at T = 5, 10, 15, 20, 25, 30 K
is shown in Fig. 2(e). In contrast to the Dingle-plot pro-
cedure, from the ratios 	ρxx/	ρxy we obtain a reasonable
temperature dependence of the scattering rate 1/τ (T ) shown
in the inset in Fig. 2(e) and given by the sum of contributions
from the electron-phonon (e-ph) and electron-electron (e-e)
interaction [2],

τ−1(T ) = τ−1(0) + τ−1
e−ph(T ) + τ−1

e−e(T ), (8)

where at low T < 30K τ−1
e−ph(T ) ∝ T 3 and τ−1

e−e(T ) ∝ T 2.
Note that the temperature dependence of scattering time, ob-
tained fitting the experimental data using Eq. (7) and shown in
the inset in Fig. 2(e), reasonably agrees with the temperature
dependence of resistivity and qualitatively with Eq. (8). This
suggests that the short-range scattering potential, coming from
impurities or other crystal imperfections or from short-wave-
length phonons, gives the major contribution to the electron
scattering rate in this temperature range, but the e-e and e-ph
interaction is also considerable at T > 10K.

With increasing temperature, the MQO in magnetore-
sistance quickly disappear according to Eq. (2) due to
temperature smearing of the Fermi level. An increase in tem-
perature also leads to the raise of electron scattering rate τ−1

because of the e-ph and e-e interaction [2]. However, in the
lowest order of e-ph interaction and for exponentially weak
MQO, the e-ph interaction leaves the Dingle factor RD and
the effective mass m∗ unchanged in the MQO damping given
by Eq. (1) [50,51]. This comes from the special cancellation
of two terms in the electron self energy at T � h̄ωc, which
enter both RD and RT . Later this cancellation was confirmed
for the 2D electron systems and for the e-e interaction [52–54]
and named the first Matsubara-frequency rule [54].

The above cancellation of the T -dependence of MQO am-
plitude [50–54] concerns only the exponential factor given
by Eq. (1), which contains the product of RT and RD. The
prefactors ωcτ in Eqs. (5) and (7), as well as the Dingle
factor RD alone, do not have this cancellation, and τ in these
prefactors depends on temperature.

The resistivity ρxx(T ) contains the T -dependence of the
transport scattering rate τ−1

tr (T ), which differs from τ−1(T )
at low temperature [2]. Hence, ρxx(T ) only gives a qualita-
tive dependence τ (T ). Thermal conductivity contains τ−1(T )
in combination with the electronic part of the specific heat
C(T ) ∝ T [2] and also can be used to extract the dependence
τ−1(T ). The temperature dependence of τ and of the Din-
gle factor (3) can also be studied experimentally using the
so-called differential or slow magnetoresistance oscillations
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(SlO) [36,48,55–58]

ρd ≈ Ad cos (2π	F/B)R2
D (9)

with a frequency 	F proportional not to the Fermi energy
εF or to the Fermi-pocket area but to the splitting of electron
band structure due to the interlayer transfer integral. This
energy splitting is not affected by the temperature smearing
of the Fermi level, hence the SlO do not have the temperature
damping factor RT given by Eq. (2), and the temperature
damping of SlO is determined only by the electron scatter-
ing processes entering τ−1(T ). The SlO amplitude is also
not affected by the macroscopic sample inhomogeneities,
which smear the Fermi level and MQO similar to tempera-
ture [48,55–59]. Therefore, the SlO are often stronger than
the usual MQO [55]. The magnetic intersubband oscillations
[60–63] or difference-frequency oscillations in multiband
metals [64] have a similar origin but are less convenient to
extract τ−1(T ), since their amplitudes contain the temperature
damping factor RT (T ) because the effective masses differ on
two different bands or FS pockets.

We pay attention on the fact which was not seen before:
if τ in Eq. (5) decreases with temperature, e.g., due to e-e
or e-ph interaction, the MQO should fade with temperature
much slower for Hall than for diagonal resistivity, because
the oscillatory term in Hall resistivity is inversely proportional
τ . This interesting fact did not get enough attention till now,
probably, because the work [46] was oriented mainly on the
quantum Hall effect (QHE) systems. As a rule, QHE is stud-
ied in semiconducting heterostructures having relatively low
carrier concentration. Hence, in these structures the relative
MQO in Hall resistance appear much weaker than the MQO in
magnetoresistance. Another situation takes place in metallic
Q2D compounds where the carrier concentration is high and
the Hall effect is not too large. In such systems one can

expect that the relative MQO in Hall coefficient are much
stronger than in diagonal magnetoresistance. As an indication
of such a behavior we notice the first observation of MQO
in high-temperature cuprate superconductors just in the Hall
resistance [7]. From Eq. (5) we see that the MQO of Hall
coefficient are stronger than the MQO of diagonal magnetore-
sistance at low and intermediate magnetic field range when
ωcτ � 1. Thus, for the experimental observation of this en-
hancement of MQO in Hall coefficient in other compounds,
the most convenient is to study Q2D metals in the intermediate
magnetic-field range.

To summarize, we performed a comprehensive analysis
of the quantum oscillations of magnetoresistance tensor in
layered rare-earth tritellurides, including the intralayer di-
agonal and Hall magnetoresistance. The magnetic quantum
oscillations (MQO) of Hall coefficient are much stronger
and persist to much higher temperature. We show that this
is a general effect for MQO in highly anisotropic metals,
and the combined Hall and diagonal magnetoresistance mea-
surements provide additional useful information about the
electronic structure. In particular, the ratio of MQO ampli-
tudes of diagonal and Hall magnetoresistance components
depends linearly on the magnetic field, and its slope gives a
simpler and much more accurate estimate of the electron mean
free time than the Dingle plot, especially at finite temperature
T ∼ h̄ωc. This provides an elegant new method of measuring
the electron scattering rate and its temperature dependence
in various quasi-2D conductors, including high-temperature
superconductors, organic metals, layered van-der-Waal crys-
tals, topological materials, graphite intercalation compounds,
artificial heterostructures, etc.

The work is supported by RSF-ANR Grant No. RSF-22-
42-09018 and No. ANR-21-CE30-0055.

[1] D. Shoenberg, Magnetic Oscillations in Metals (Cambridge
University Press, Cambridge, 1984).

[2] A. A. Abrikosov, Fundamentals of the Theory of Metals
(North-Holland, Amsterdam, 1988).

[3] J. M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, Cambridge, 1972).

[4] I. M. Lifshitz and A. M. Kosevich, Theory of magnetic suscep-
tibility in metals at low temperatures, Sov. Phys. JETP 2, 636
(1955).

[5] The Physics of Organic Superconductors and Conductors, edited
by A. G. Lebed, Springer Series in Materials Science Vol. 110
(Springer-Verlag, Berlin, Heidelberg, 2008).

[6] M. V. Kartsovnik, High magnetic fields: A tool for studying
electronic properties of layered organic metals, Chem. Rev. 104,
5737 (2004).

[7] N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B.
Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L.
Taillefer, Quantum oscillations and the Fermi surface in an
underdoped high-Tc superconductor, Nature (London) 447, 565
(2007).

[8] B. Vignolle, A. Carrington, R. A. Cooper, M. M. J. French,
A. P. Mackenzie, C. Jaudet, D. Vignolles, C. Proust, and N. E.

Hussey, Quantum oscillations in an overdoped high-Tc super-
conductor, Nature (London) 455, 952 (2008).

[9] T. Helm, M. V. Kartsovnik, M. Bartkowiak, N. Bittner, M.
Lambacher, A. Erb, J. Wosnitza, and R. Gross, Evolution of
the Fermi surface of the electron-doped high-temperature su-
perconductor Nd2−xCexCuO4 revealed by Shubnikov–de Haas
oscillations, Phys. Rev. Lett. 103, 157002 (2009).

[10] T. Helm, M. V. Kartsovnik, I. Sheikin, M. Bartkowiak, F.
Wolff-Fabris, N. Bittner, W. Biberacher, M. Lambacher, A.
Erb, J. Wosnitza, and R. Gross, Magnetic breakdown in the
electron-doped cuprate superconductor Nd2−xCexCuO4: The re-
constructed Fermi surface survives in the strongly overdoped
regime, Phys. Rev. Lett. 105, 247002 (2010).

[11] S. E. Sebastian, N. Harrison, R. Liang, D. A. Bonn, W. N.
Hardy, C. H. Mielke, and G. G. Lonzarich, Quantum oscilla-
tions from nodal bilayer magnetic breakdown in the underdoped
high temperature superconductor YBa2Cu3O6+x , Phys. Rev.
Lett. 108, 196403 (2012).

[12] T. Terashima, N. Kurita, M. Tomita, K. Kihou, C.-H. Lee, Y.
Tomioka, T. Ito, A. Iyo, H. Eisaki, T. Liang, M. Nakajima,
S. Ishida, Shin-ichi Uchida, H. Harima, and S. Uji, Com-
plete Fermi surface in BaFe2As2 observed via Shubnikov–de

L161108-5

http://jetp.ras.ru/cgi-bin/dn/e_002_04_0636.pdf
https://doi.org/10.1021/cr0306891
https://doi.org/10.1038/nature05872
https://doi.org/10.1038/nature07323
https://doi.org/10.1103/PhysRevLett.103.157002
https://doi.org/10.1103/PhysRevLett.105.247002
https://doi.org/10.1103/PhysRevLett.108.196403


A. A. SINCHENKO et al. PHYSICAL REVIEW B 110, L161108 (2024)

Haas oscillation measurements on detwinned single crystals,
Phys. Rev. Lett. 107, 176402 (2011).

[13] D. Graf, R. Stillwell, T. P. Murphy, J.-H. Park, E. C. Palm,
P. Schlottmann, R. D. McDonald, J. G. Analytis, I. R. Fisher,
and S. W. Tozer, Pressure dependence of the BaFe2As2 Fermi
surface within the spin density wave state, Phys. Rev. B 85,
134503 (2012).

[14] A. I. Coldea, D. Braithwaite, and A. Carrington, Iron-based
superconductors in high magnetic fields, Comptes Rendus.
Physique 14, 94 (2013).

[15] M. Kuraguchi, E. Ohmichi, T. Osada, and Y. Shiraki, In-
terlayer coherency and angular-dependent magnetoresistance
oscillations in quasi-two-dimensional conductors, Synth. Met.
133-134, 113 (2003).

[16] Y.-W. Tan, H. L. Stormer, L. N. Pfeiffer, and K. W. West,
High-frequency magneto-oscillations in GaAs/AlGaAs quan-
tum wells, Phys. Rev. Lett. 98, 036804 (2007).

[17] G. Csanyi, P. B. Littlewood, A. H. Nevidomskyy, C. J. Pickard,
and B. D. Simon, The role of the interlayer state in the electronic
structure of superconducting graphite intercalated compounds,
Nat. Phys. 1, 42 (2005).

[18] B. Fallahazad, H. C. P. Movva, K. Kim, S. Larentis, T.
Taniguchi, K. Watanabe, S. K. Banerjee, and E. Tutuc,
Shubnikov-de Haas oscillations of high-mobility holes in
monolayer and bilayer WSe2: Landau level degeneracy, effec-
tive mass, and negative compressibility, Phys. Rev. Lett. 116,
086601 (2016).

[19] Q. Jiang, C. Wang, P. Malinowski, Z. Liu, Y. Shi, Z. Lin, Z. Fei,
T. Song, D. Graf, S. Chikara, X. Xu, J. Yan, D. Xiao, and J.-H.
Chu, Quantum oscillations in the field-induced ferromagnetic
state of MnBi2−xSbxTe4, Phys. Rev. B 103, 205111 (2021).

[20] G. M. Minkov, O. E. Rut, A. A. Sherstobitov, S. A. Dvoretski,
N. N. Mikhailov, and A. V. Germanenko, Quantum oscillations
of transport coefficients and capacitance: A manifestation of the
spin Hall effect, Phys. Rev. B 108, 075301 (2023).

[21] R. A. Stradling and G. A. Antcliffe, Magnetoresistance Studies
of HgTe at low temperatures, J. Phys. Soc. Japan 21, 374 (1966)
Supplement.

[22] L. M. Bliek and G. Landwehr, De Haas-Van Alphen and
Shubnikov-De Haas effect in n-HgSe in strong magnetic fields,
Phys. Status Solidi (b) 31, 115 (1969).

[23] M. Busch, O. Chiatti, S. Pezzini, S. Wiedmann, J. Sánchez-
Barriga, O. Rader, L. V. Yashina, and S. F. Fischer, High-
temperature quantum oscillations of the Hall resistance in bulk
Bi2Se3, Sci. Rep. 8, 485 (2018).

[24] Q. Xie, C. Wang, S. Yan, L. Chen, J. Zheng, and W. Wang,
Quantum oscillations and stacked quantum Hall effect in HfTe5,
Appl. Phys. Lett. 120, 141903 (2022).

[25] R. V. Coleman, M. P. Everson, H.-A. Lu, A. Johnson, and
L. M. Falicov, Effects of high magnetic fields on charge-density
waves in NbSe3, Phys. Rev. B 41, 460 (1990).

[26] A. T. Lonchakov, S. B. Bobin, V. V. Deryushkin, V. I. Okulov,
T. E. Govorkova, V. N. Neverov, E. A. Pamyatnykh, and L. D.
Paranchich, Experimental detection of quantum oscillations of
anomalous Hall resistance in mercury selenide crystals with
cobalt impurities, Low Temp. Phys. 43, 504 (2017).

[27] V. Yu. Tsaran and S. G. Sharapov, Magnetic oscillations of the
anomalous Hall conductivity, Phys. Rev. B 93, 075430 (2016).

[28] T. Higashihara, R. Asama, R. Nakamura, M. Watanabe, N.
Tomoda, T. J. Hasiweder, Y. Fujisawa, Y. Okada, T. Iwasaki,

K. Watanabe, T. Taniguchi, N. Jiang, and Y. Niimi, Magneto-
transport properties in van der Waals RTe3 (R=La, Ce, Tb),
Phys. Rev. B 109, 134404 (2024).

[29] E. DiMasi, M. C. Aronson, J. F. Mansfield, B. Foran, and S.
Lee, Chemical pressure and charge-density waves in rare-earth
tritellurides, Phys. Rev. B 52, 14516 (1995).

[30] V. Brouet, W. L. Yang, X. J. Zhou, Z. Hussain, R. G. Moore,
R. He, D. H. Lu, Z. X. Shen, J. Laverock, S. B. Dugdale, N.
Ru, and I. R. Fisher, Angle-resolved photoemission study of the
evolution of band structure and charge density wave properties
in RTe3 (R=Y, La, Ce, Sm, Gd, Tb, and Dy), Phys. Rev. B 77,
235104 (2008).

[31] N. Ru, C. L. Condron, G. Y. Margulis, K. Y. Shin, J. Laverock,
S. B. Dugdale, M. F. Toney, and I. R. Fisher, Effect of chemical
pressure on the charge density wave transition in rare-earth
tritellurides RTe3, Phys. Rev. B 77, 035114 (2008).

[32] A. A. Sinchenko, P. Lejay, and P. Monceau, Sliding
charge-density wave in two-dimensional rare-earth tellurides,
Phys. Rev. B 85, 241104(R) (2012).

[33] A. A. Sinchenko, P. D. Grigoriev, P. Lejay, and P. Monceau,
Spontaneous breaking of isotropy observed in the electronic
transport of rare-earth tritellurides, Phys. Rev. Lett. 112, 036601
(2014).

[34] A. A. Sinchenko, P. Lejay, O. Leynaud, and P. Monceau,
Unidirectional charge-density-wave sliding in two-dimensional
rare-earth tritellurides, Solid State Commun. 188, 67
(2014).

[35] N. Ru, R. A. Borzi, A. Rost, A. P. Mackenzie, J. Laverock, S. B.
Dugdale, and I. R. Fisher, De Haas–van Alphen oscillations
in the charge density wave compound lanthanum tritelluride
LaTe3, Phys. Rev. B 78, 045123 (2008).

[36] P. D. Grigoriev, A. A. Sinchenko, P. Lejay, A. Hadj-Azzem,
J. Balay, O. Leynaud, V. N. Zverev, and P. Monceau, Bilayer
splitting versus Fermi-surface warping as an origin of slow
oscillations of in-plane magnetoresistance in rare-earth tritel-
lurides, Eur. Phys. J. B 89, 151 (2016).

[37] S. Lei, J. Lin, Y. Jia, M. Gray, A. Topp, G. Farahi, S. Klemenz,
T. Gao, F. Rodolakis, J. L. McChesney, C. R. Ast, A. Yazdani,
K. S. Burch, S. Wu, N. P. Ong, and L. M. Schoop, High mobility
in a van der Waals layered antiferromagnetic metal, Sci. Adv. 6,
eaay6407 (2020).

[38] M. Watanabe, S. Lee, T. Asano, T. Ibe, M. Tokuda, H.
Taniguchi, D. Ueta, Y. Okada, K. Kobayashi, and Y. Niimi,
Quantum oscillations with magnetic hysteresis observed in
CeTe3 thin films, Appl. Phys. Lett. 117, 072403 (2020).

[39] P. Walmsley, S. Aeschlimann, J. A. W. Straquadine, P. Giraldo-
Gallo, S. C. Riggs, M. K. Chan, R. D. McDonald, and I. R.
Fisher, Magnetic breakdown and charge density wave forma-
tion: A quantum oscillation study of the rare-earth tritellurides,
Phys. Rev. B 102, 045150 (2020).

[40] L. J. van der Pauw, Determination of the resistivity tensor and
Hall tensor of anisotropic conductors, Philips Res. Repts. 16,
187 (1961).

[41] H. C. Montgomery, Method for measuring electrical resistivity
of anisotropic materials, J. Appl.Phys. 42, 2971 (1971).

[42] B. F. Logan, S. O. Rice, and R. F. Wick, Series for computing
current flow in a rectangular block, J. Appl. Phys. 42, 2975
(1971).

[43] D. Shoenberg, Magnetization of a two-dimensional electron
gas, J. Low Temp. Phys. 56, 417 (1984).

L161108-6

https://doi.org/10.1103/PhysRevLett.107.176402
https://doi.org/10.1103/PhysRevB.85.134503
https://doi.org/10.1016/j.crhy.2012.07.003
https://doi.org/10.1016/S0379-6779(02)00322-3
https://doi.org/10.1103/PhysRevLett.98.036804
https://doi.org/10.1038/nphys119
https://doi.org/10.1103/PhysRevLett.116.086601
https://doi.org/10.1103/PhysRevB.103.205111
https://doi.org/10.1103/PhysRevB.108.075301
https://www.jps.or.jp/books/jpsjs/21/jpsj.21s-toc.html
https://doi.org/10.1002/pssb.19690310113
https://doi.org/10.1038/s41598-017-18960-0
https://doi.org/10.1063/5.0084727
https://doi.org/10.1103/PhysRevB.41.460
https://doi.org/10.1063/1.4983613
https://doi.org/10.1103/PhysRevB.93.075430
https://doi.org/10.1103/PhysRevB.109.134404
https://doi.org/10.1103/PhysRevB.52.14516
https://doi.org/10.1103/PhysRevB.77.235104
https://doi.org/10.1103/PhysRevB.77.035114
https://doi.org/10.1103/PhysRevB.85.241104
https://doi.org/10.1103/PhysRevLett.112.036601
https://doi.org/10.1016/j.ssc.2014.03.005
https://doi.org/10.1103/PhysRevB.78.045123
https://doi.org/10.1140/epjb/e2016-70159-6
https://doi.org/10.1126/sciadv.aay6407
https://doi.org/10.1063/5.0007517
https://doi.org/10.1103/PhysRevB.102.045150
https://doi.org/10.1063/1.1660656
https://doi.org/10.1063/1.1660657
https://doi.org/10.1007/BF00681804


COMPARATIVE STUDY OF MAGNETIC QUANTUM … PHYSICAL REVIEW B 110, L161108 (2024)

[44] B. Habib, E. Tutuc, S. Melinte, M. Shayegan, D. Wasserman,
S. A. Lyon, and R. Winkler, Spin splitting in GaAs (100) two-
dimensional holes, Phys. Rev. B 69, 113311 (2004).

[45] G. M. Minkov, O. E. Rut, A. A. Sherstobitov, S. A. Dvoretski,
N. N. Mikhailov, V. A. Solov’ev, M. Y. Chernov, S. V.
Ivanov, and A. V. Germanenko, Magneto-intersubband oscil-
lations in two-dimensional systems with an energy spectrum
split due to spin-orbit interaction, Phys. Rev. B 101, 245303
(2020).
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