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Abstract: The oxidation of tetraselenatetracene (TSeT) by tetracyanoquinodimethane in the pres-
ence of dysprosium(III) tris(hexafluoroacetylacetonate), DyIII(hfac)3, produces black crystals of
{TSeT1.5}•+[DyIII(hfac)4]− (1) salt, which combines conducting and magnetic sublattices. It contains
one-dimensional stacks composed of partially oxidized TSeT molecules (formal averaged charge
is +2/3). Dimers and monomers can be outlined within these stacks with charge and spin density
redistribution. The spin triplet state of the dimers is populated above 128 K with an estimated singlet-
triplet energy gap of 542 K, whereas spins localized on the monomers show paramagnetic behavior.
A semiconducting behavior is observed for 1 with the activation energy of 91 meV (measured by the
four-probe technique for an oriented single crystal). The DyIII ions coordinate four hfac− anions in
[DyIII(hfac)4]−, providing D2d symmetry. Slow magnetic relaxation is observed for DyIII under an
applied static magnetic field of 1000 Oe, and 1 is a single-ion magnet (SIM) with spin reversal barrier
Ueff = 40.2 K and magnetic hysteresis at 2 K. Contributions from DyIII and TSeT•+ paramagnetic
species are seen in EPR. The DyIII ion rarely manifests EPR signals, but such signal is observed in 1.
It appears due to narrowing below 30 K and has g4 = 6.1871 and g5 = 2.1778 at 5.4 K.

Keywords: tetraselenatetracene; semiconductor; single-ion magnet; crystal structure; magnetic
coupling; optical and magnetic properties

1. Introduction

Developing multifunctional materials is a very important task of modern science [1,2].
Up-to-date conducting materials are developed based on oxidized or reduced organic
or organometallic molecules. They can show semiconducting properties, metallic con-
ductivity, and even superconductivity, which is observed in some cases [3–5]. The field
of molecular magnets is also growing quickly starting from compounds showing three-
dimensional magnetic ordering of spins to single-ion magnets (SIMs), which have been
successfully developed over the past three decades [6–11]. In contrast to classical magnets,
SIMs can exhibit a slow magnetic relaxation of magnetization below blocking tempera-
tures [12]. It is expected that such magnets are promising to be used in high-density memory
devices [13]. Among different SIMs, lanthanide-based SIMs are most promising to reach
high spin-reversible barriers and longer relaxation times. To date, the maximum blocking
temperature was obtained for dysprosium SIMs containing substituted cyclopentadienyl
ligands [8–10,14].
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The combination of conductivity and SIM properties is also a very promising task
since, potentially, conductivity and magnetism can coexist in one compound affecting each
other. Previously, such phenomenon, known as giant magnetoresistance, was observed
in molecular conductors when a magnetic field affects conductivity [15]. Such phenom-
ena are interesting for spintronic applications. To date, several attempts have been made
to combine such properties. For example, oxidized bis(ethylenedithio)tetrathiafulvalene
(BEDT-TTF) or bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF) and M(dmit)2, where
dmit is 4,5-dimercapto-1,3-dithiole-2-dithione, were co-crystallized with SIMs containing
ReIV, MnII/III, and CoII ions [16–23]. In several cases, these compounds show a metallic type
of conductivity in some ranges and SIM properties at very low temperatures. Lanthanide-
based SIMs are also promising to be combined with oxidized or reduced organic molecules,
which can manifest conductivity. Previously, we combined BEDT-TTF with different Ho, Dy,
and Tb chlorides, but no SIM properties were found for these semiconductors [24]. Electro-
crystallization was used to combine DyIII magnetic chains and BEDT-TTF to prepare semi-
conducting SIMs [25]. A similar semiconducting SIM was obtained with 7,7,8,8-tetracyano-
p-quinodimethane (TCNQ) coordinated with DyIII [26]. Semiconducting SIMs were ob-
tained based on BEDT-TTF and tetramethyltetrathiafulvalene (TMTSF) in the form of
(BEDT-TTT)5Dy(NCS)7(KCl)0.5 and (TMTSF)5[Dy(NCS)4(NO3)2]CHCl3 crystals [27,28]. An
interesting example of conductive SIM was obtained by Katoh et al. [29] when the double-
decker DyIIIPc2 (Pc = phthalocyanine) complex was partially oxidized to [DyIIIPc2](I)x.
It showed a metallic type of conductivity at room temperature, but it was semiconduct-
ing at lower temperatures (10−3 S·cm−1) probably due to 1D instability. The SIM had
Ueff = 58 cm−1. It was conducting due to the partial oxidation of the Pc ligand, and the
small negative magnetoresistance can be due to 4f−π interactions [29].

In this work, we developed a new synthetic approach for the compounds of ox-
idized organic molecules with metal hexafluoroacetylacetonate anions. Compounds
based on DyIII(hfac)3 can potentially show SIM properties, for example, DyIII(hfac)3·
(1,10-phenantroline-5,6-dione) is a SIM with Ueff = 194.3 K [30]. Therefore, we tried to
obtain a compound of oxidized tetraselenatetracene with the [DyIII(hfac)4]− anions. This
compound was isolated as good-quality single crystals with the {TSeT1.5}•+[DyIII(hfac)4]−

(1) composition. This allows us to study its crystal structure, conductivity on single crystals
as well as optical and magnetic properties. The TSeT stacks are not uniform, displaying a
semiconducting behavior that is supported by band structure calculations. Semiconducting
stacks coexist in 1 with the [DyIII(hfac)4]− anions, which show SIM properties at liquid
helium temperatures. It is interesting that TSeT•+ radical cations, according to our data, are
weakly involved in magnetic coupling between DyIII ions.

2. Results and Discussion

A new chemical method was developed to obtain salt {TSeT1.5}•+[DyIII(hfac)4]− (1).
One equivalent of tetracyanoquinodimethane (TCNQ), anhydrous DyIII(hfac)3, and a slight
excess of TSeT (sublimed) were mixed in dry o-dichlorobenzene in anaerobic conditions for
24 h at 60 ◦C, providing the dissolution of TSeT and the formation of a deep green-blue
solution and some amount of light-green powder precipitated. TCNQ oxidizes TSeT to a
radical cation state, forming TSeT•+ and TCNQ•− ions. The light-green powder contains
mainly DyIII and TCNQ•− according to the microprobe analysis and IR spectra. Therefore,
the insoluble DyIII(TCNQ)3 polymer can precipitate from the solution. This polymer can
be similar to DyIII(TCNE)3, where TCNE is tetracyanoethylene studied previously by
Miller et al. [31]. Therefore, DyIII(hfac)3 is not stable in the presence of TCNQ•−, and
hfac− ligands are substituted by TCNQ•− forming an insoluble polymer. As a result, free
hfac− anions formed in the solution add to DyIII(hfac)3 forming [DyIII(hfac)4]− anions
that become counter anions for TSeT•+. The large size of [DyIII(hfac)4]− provides high
enough solubility of the salt despite the very poor solubility of TSeT•+ salts in organic
solvents. The DyIII(TCNQ)3 polymer was filtered, and TCNQ was not found in the reaction
products. Therefore, the resulting reaction solution contains only TSeT•+, [DyIII(hfac)4]−,
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and probably some amount of hfac−. That allows one to obtain salt 1 in a pure state as
large well-shaped single crystals when the obtained o-dichlorobenzene solution is slowly
mixed with n-hexane for two months. The preliminary reaction scheme (Scheme 1) is
shown below:
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Though the reaction mechanism is not studied, only crystals of 1 were isolated without
any powdered or crystalline admixtures. Neutral TSeT can also be present in the synthesis
since a slight excess of TSeT is used relative to other components, allowing the formation
of the salt with a partial +2/3 charge averaged on the TSeT molecules.

It should be noted that only some of metal hexafluoroacetylacetonates (LaIII(hfac)3 or
MII(hfac)2) can be used in these syntheses, and salts obtained with TSeT and BEDT-TTF
will be published in our future article. Other substituted metal acetylacetonates (like acac
or 2,2,6,6-tetramethyl-3,5-heptanedionate (TMHD)) are stable in the presence of TCNQ•−,
and no crystals were obtained in this case.

Optical properties of 1 are discussed in Supporting information (Tables S1 and S2 and
Figures S1–S3).

The crystal structure of {TSeT1.5}•+[DyIII(hfac)4]− (1) salt studied at 100.0(2) K contains
one and a half independent TSeT and one independent DyIII(hfac)4 unit (Figure S4). Several
CF3 groups of hfac are disordered between two orientations even at 100.0(2) K (only groups
in major orientation are shown in the Figure 1a and Figure S5). The observed composition
indicates a formal +2/3 charge averaged on the TSeT molecules since DyIII(hfac)4 units
have an exact −1 charge due to an addition of one hfac− anion to DyIII(hfac)3. The
[DyIII(hfac)4]− anions form three-dimensional packing due to the presence of shortened
van der Waals C. . .F, O. . .F, and F. . .F contacts. Some of these contacts are rather short, for
example, several F. . .F contacts are in the 2.81–2.90 Å range. π-stacks composed of the TSeT
cations are formed in this three-dimensional network (Figure 1a). The geometry of the
[DyIII(hfac)4]− anions is shown in Figure S5. Totally, four hfac− anions coordinate to each
DyIII and, as a result, it is surrounded by eight oxygen atoms. We analyzed the geometry of
the surrounding of DyIII with the SHAPE 2.1. software [32,33] (Table S3) and found that
the smallest value is obtained for the triangle dodecahedron geometry with D2d symmetry
(0.374). However, the square antiprism geometry having D4d symmetry is also positioned
rather close to the minimum (2.855). Nevertheless, two sets of four oxygen atoms form
two planes that are perpendicular to each other (the dihedral angle between them is 89.96◦),
and the deviation of oxygen atoms from these planes is small, being 0.023–0.032 and
0.031–0.041 Å. The length of the Dy-O bonds varies from 2.32 to 2.36 Å.

There are two independent TSeT molecules in the stacks. Molecules derived from one
and half independent TSeT are marked as types A and B, respectively. They have slightly
different lengths of the Se-Se bonds of the 2.3251(4) and 2.3308(4) Å for the molecules of
type A and B, respectively. It is known that the transition from the neutral TSeT to TseT•+

is accompanied by changes in bond lengths [34–36]. The length of the Se–Se bond in the
neutral TSeT is 2.335(3) Å [34]. The length of these bonds in the salts with a formal +0.5
charge on the molecule is 2.323(3) Å in TSeT2Cl, 2.320(7) Å in TSeT2(SCN), and 2.325(2) and
2.324(2) Å in TSeT2(Hg2I6) [34–36]. The length of the Se–Se bond for TSeT•+ with +1 charge
on the molecule is 2.322(3) Å [34]. Thus, there is an obvious tendency to the shortening of
the Se-Se bond when the positive charge on the molecule increases. Therefore, it is seen
that the positive charge on TSeT of type B is smaller than that on TSeT of type A, providing
a non-uniform charge distribution in the stacks. According to the length of the Se-Se bond,
the charge on molecules of type A is between +0.5 and +1.0, and the charge on molecules of
type B is between 0 and +0.5.
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spin localized on TSeT, we obtain a close value of 14.33 emu·K/mol. It is seen that, from a 
magnetic point of view, the contribution from spins localized on TSeT is very small in 
comparison with the contribution from the DyIII ion. The χMT values are nearly tempera-
ture-independent down to 10 K, and the χMT values decrease only below this temperature 
(Figure 2a). Such magnetic behavior can be described quite well by the PHI 3.1.5. software 
fitting for DyIII [37], with g = 4/3 and zero-splitting parameter D = −5.2 cm−1. At such D 
value, the averaged intermolecular coupling zJ was estimated to be −0.004 cm−1 (Figure 
2a). Both the D value and the averaged intermolecular coupling (zJ) provide a decrease in 
the χMT values at low temperatures. The determined set of parameters better describes the 
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Figure 1. Crystal structure of salt 1: (a) view along the TSeT stacks and the crystallographic a axis;
(b) view on the TSeT stack showing dimers and monomers composed of molecules of types A and B;
and overlapping between the molecules of type A (c) and types A and B (d). Carbon is dark brown;
fluorine is green; dysprosium is violet; oxygen is red; and selenium is light brown.

Molecules of type A form dimers with a parallel arrangement of TSeT (due to the
inversion center between them) in an atom-over-atom manner with some shift relative to
each other (Figure 1). The short interplanar distance of 3.441 Å provides short C. . .C, C. . .Se
and Se. . .Se contacts, resulting in effective π-π stacking in the dimers. The TSeT molecule
of type B is rotated relatively to the molecule of type A by 77.4◦. The A-B interplanar
distance is slightly shorter (3.423 Å), but the number of shortened van der Waals contacts is
essentially less relative to the A-A dimer. Consequently, the π-π interaction is less effective
in this case. Thus, the TSeT stacks can be considered to be composed of dimeric and
monomeric units. 1D metallic conductivity is not expected in 1 because of the non-uniform
charge distribution and the presence of two structurally different TSeT molecules. Several
short F. . .Se contacts are formed for each TSeT with the surrounding [DyIII(hfac)4]− anions
of 3.28–3.34 Å length. The shortest Se-Dy distance is 7.14 Å for the molecules of type A and
6.78 Å for the molecules of type B.

The magnetic properties of 1 were studied by the EPR and SQUID techniques
(Figures S7–S9). The χMT value is equal to 14.34 emu·K/mol at 300 K (Figure 2a). This
value is only slightly higher than the theoretically calculated value of 14.17 emu·K/mol
for DyIII with the 6H15/2 electron configuration at g = 4/3. If we add the contribution from
one S = 1/2 spin localized on TSeT, we obtain a close value of 14.33 emu·K/mol. It is
seen that, from a magnetic point of view, the contribution from spins localized on TSeT
is very small in comparison with the contribution from the DyIII ion. The χMT values
are nearly temperature-independent down to 10 K, and the χMT values decrease only
below this temperature (Figure 2a). Such magnetic behavior can be described quite well
by the PHI 3.1.5. software fitting for DyIII [37], with g = 4/3 and zero-splitting parameter
D = −5.2 cm−1. At such D value, the averaged intermolecular coupling zJ was estimated to
be −0.004 cm−1 (Figure 2a). Both the D value and the averaged intermolecular coupling
(zJ) provide a decrease in the χMT values at low temperatures. The determined set of
parameters better describes the magnetic behavior of 1 at low temperatures. Additionally,
salt 1 manifests a slight increase in the χMT values below 50 K, as shown in the inset in
Figure 2a. However, PHI fitting cannot reproduce well this increase, and it is very small in
comparison with the observed χMT values. As we discuss below in the EPR section, this
increase can be due to weak antiferromagnetic coupling between DyIII spins through the
spins localized on the TSeT monomers, which preserve spin even at low temperatures. As
a result, pairs with a parallel arrangement of DyIII spins can appear. Potentially, such weak
coupling is possible since the TSeT monomers are positioned between the DyIII ions with
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a Se-DyIII distance of 6.78 Å. At the same time, this distance is rather long, and spins are
only partially localized on the TSeT monomers. Magnetization is not saturated for 1 even
at 50 kOe magnetic field at 2 K, and the value of magnetization achieved at this field is
7.50 µBNA (Figure S9).
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Figure 2. Magnetic data for 1: (a) The temperature dependence of χMT values and theoretical
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The dynamic magnetic susceptibility measurements in an oscillating magnetic field of
3 Oe were carried out to study the dynamic magnetic behavior of 1 (Figures S10 and S11).
The measurements in a zero external magnetic field (HDC = 0 Oe) showed no significant
signals at 2 K (Figure S10). It is well known that the effect of quantum tunneling of
magnetization (QTM) can be suppressed by the application of an external static magnetic
field. We performed the AC measurements at applied external DC fields up to 5000 Oe,
allowing us to observe weak but discernible out-of-phase signals on the χ′′(ν) dependence
that indicates slow magnetic relaxation in 1 (Figure S10). The optimal value of the DC
field was set as 1000 Oe. The frequency (0.1–100 Hz) dependences of the in-phase and
out-of-phase components of AC magnetic susceptibility for 1 under applied static field
of 1000 Oe in the 2.2–3.8 K temperature range and the fit of the experimental data by the
generalized Debye model are shown in Figure S10 in the 0.1–100 Hz range since no peaks
were found in the 100–1500 Hz range.

The resulting dependence of ln(τ) on inverse temperature for the relaxation process is
shown in Figure 2c. The best fit of the experimental data was achieved using Equation (1),
which is a linear combination of the Orbach, Raman, and direct mechanisms.

τ−1 = τ−1
0 exp

(
−

Ue f f

kBT

)
+ CTn + AH4T (1)

The obtained anisotropy barrier is Ueff = 27.9 ± 4.4 cm−1 (40.2 ± 6.3 K) for 1. The
other fitting parameters are τ0 = 7.5 (±0.9) × 10−7 s, C = 0.0011 ± 0.0002 K−n·s−1, and
A = (3.6 ± 1.0) × 10−12 Oe−4·K−1·s−1. The exponent of the Raman mechanism was fixed
as n = 9 [38]. Thus, salt 1 can be classified as a single ion magnet induced by magnetic field
of 1000 Oe. The estimated spin reversal barrier of 40.2 K is rather small. The magnetic
hysteresis loop for 1 was measured at 2 K (Figure 2b). It has a single-butterfly shape
characteristic of SIMs [39]. However, the lines merge when the field approaches zero
within the ±900 Oe range (Figure 2b). Such behavior is characteristic of field-induced
SIMs, which are magnets in an external magnetic field (specifically, a 1000 Oe static field at
2 K). The hysteresis loop is collapsed at 5 K. The splitting between the curves obtained in
zero-field (ZF) and field-cooling (FC) conditions is also characteristic for magnets. Weak
splitting appears below 15 K (Figure S8), but an essential difference is observed only below
approximately 5 K when salt 1 transfers to a single-ion magnet state.



Int. J. Mol. Sci. 2024, 25, 8068 6 of 12

Conductivity was measured by the four-probe technique for a single crystal oriented
by X-ray diffraction in such a way that it is measured along the conducting 1D stacks from
the TSeT molecules (along the crystallographic a axis). The resistivity of the crystal is about
2000 Ω·cm at 300 K, and resistivity increases with the temperature decrease (Figure S6).
The estimated activation energy for this semiconductor is 91 meV (the determination of this
energy in the cooling process is in the 300–210 K range provided in the inset in Figure S6).

Since the contribution from TSeT on the background of high-spin DyIII ions is not
resolved, SQUID data cannot provide information about the magnetic behavior of the TSeT
sublattice. This information can be obtained by using the EPR technique. Salt 1 at 290 K
shows an intense EPR signal, which can be described well by two lines (Figure 3a). The
main line is rather broad and has g = 2.0177 and the linewidth (∆H) of 15.36 mT. Besides
this, a narrower line is observed at a larger g-factor of 2.0322, and the linewidth of this
line is 3.6 mT. Since the integral intensities of the narrower line are only 1% of that of the
broader line, we can conclude that this line originates from impurities. The broader line
noticeably narrows with the temperature decrease (Figure 3e) down to about 6 mT at 150 K,
and the g-factor only slightly decreases with the temperature. The most interesting feature
of this line is that its intensity decreases with the temperature, indicating a temperature-
activated process (Figure 3f). A minimal intensity is observed at 128 K (Figure 3f), and at
this temperature, the intensity of the main signal decreases more than three times (2700
at 128 K and 9800 at 290 K in arb. units). If we plot the natural logarithm of the integral
intensity of the signal at a certain temperature deducting the integral intensity of a signal at
128 K multiplied by reciprocal temperature, we obtain a linear dependence that allows us
to determine the gap for this process, which is equal to 542 K (Figure 3f). Since TSeT stacks
contain monomers (type B) and dimers (type A), we can suppose that dimers can show
singlet–triplet transitions and the determined gap corresponds to a singlet–triplet transition
in the dimers. Dimers are nearly diamagnetic at 128 K, but spins appear on them above this
temperature. It is interesting that the appearance of spins on the dimers above 128 K can
provide the growth of conductivity above 150 K. The population of the triplet state of the
dimers can increase the number of carriers in the TSeT stacks. The signal can be attributed
to the TSeT monomers below 128 K, and it shows a different behavior since the intensity of
this signal increases with the temperature decrease. The signal splits at 128 K and below. As
a result, this asymmetric signal can be fitted by three lines (Figure S12). An example of this
signal is shown at 80 K, which can be fitted by three lines with the following parameters:
g1 = 2.0240 and ∆H = 3.81 mT, g2 = 2.0087 and ∆H = 2.13 mT, g3 = 2.0006 and ∆H = 1.22 mT
(Figure S12). This signal shows nearly paramagnetic temperature dependence with a small
Weiss temperature of only −0.8 K (Figure S13). Taking into account the obtained Curie–
Weiss dependence for spins localized on the monomers, we can conclude that the integral
intensity of this signal at 290 K is about 1300 arb. units, whereas the integral intensity of
the EPR signal localized on the dimers at 290 K is 8500 arb. units. Thus, following the
crystal structure data, spin density is mainly localized on the TSeT molecules of type A.
At the same time, the TSeT molecules of type B are not neutral and share about 14% of
spin density at 290 K (this contribution can decrease due to the further population of a
triplet state in the dimers). The EPR signal from the TSeT monomers is strongly broadened
below 20 K. As a result, the signal at 5.4 K is nearly three times broader than the signal at
20 K. Due to the broadening of the line, splitting is not well resolved below 20 K, and the
signal can be described better by one Lorentzian line. Generally, the temperature decrease
provides a narrowing of EPR signals, but an essential broadening of the EPR signal can
be due to the participation of the TSeT monomer spin in the magnetic coupling of spins.
Since paramagnetic species below 20 K can be the DyIII spins, the TSeT monomers can
mediate magnetic coupling between them providing the formation of the DyIII pairs with
the parallel orientation of spins, such orientation provides the growth of the χMT values
below 50 K, as shown in the inset in Figure 2a.
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Generally, high-spin paramagnetic lanthanide ions are not manifested in the EPR
spectra due to high zero-field splitting, which takes place for dysprosium ions and usually
significantly exceeds the energy of a microwave quantum at X-band EPR [40,41]. However,
a very broad signal appears for 1 below 30 K. It has a linewidth of more than 250 mT
at 30 K and cannot be well resolved. Therefore, at higher temperatures, this signal is
not observed due to very large broadness. However, this signal strongly narrows with
the temperature decrease, and it is well resolved at 12 K with the following parameters:
g4 = 6.0826 (∆H = 54.2 mT) and g5 = 2.1124 (∆H = 164.0 mT) at 12 K (Figure 3b). The tem-
perature decrease narrows even more this signal and shifts it to larger g-factors: g4 = 6.1871
(∆H = 49.8 mT) and g5 = 2.1778 (∆H = 137.6 mT) at 5.4 K (Figure 3c). This signal can be
unambiguously attributed to DyIII since its integral intensity is more than one-hundred
times higher than that of the EPR signal of TSeT•+ (this signal is also well resolved in
the EPR spectra at 12 and 5.4 K due to narrowness, Figure 3c). Namely, such ratio of the
intensities is expected from the contributions of TSeT and DyIII to magnetic susceptibility
of 1 at low temperatures. The spectrum of DyIII at the lowest available temperature of 4.2 K
disappears most probably due to broadening (Figure S14). This effect can be attributed to
the transition of {DyIII(hfac)4}− to the single-ion magnet state.

The central panel of Figure 4 presents a zone diagram for one-dimensional stacks
from the TSeT cations along the direction coming through the symmetric points in k-space
Γ = (0, 0, 0) and X = (0.5, 0, 0) of the first Brillouin zone and a plot of the density of states
(DOS). According to the calculated band structure, the system is a semiconductor with
the energy gap Egap = 103.17 meV. A possible reason for the appearance of the forbidden
energy gap is the partial weak dimerization of the TSeT monomers in the stacks. The
width of the forbidden energy gap is in agreement with the conductivity measurements
for a single crystal of {TSeT1.5}•+[DyIII(hfac)4]− and experimentally determined activation
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energy Ea = 91 meV. The Fermi level with energy EF = −4.3789 eV attaches the upper
boundary of a valence band, whereas the widths of unoccupied (conduction) and valence
bands are Wu = 323.02 meV and Wv = 432.64 meV. In the tight-binding method, the
value of the bandwidth (W) of the stack is determined by transfer integrals (t) between
the neighboring TSeT monomers. This allows the transfer integrals in the stacks to be
estimated as tu = Wu/2 = 161.51 meV and tv = Wv/2 = 216.32 meV.
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Figure 4. (Left panel) Fragment of the TSeT stacks showing dicationic trimers (marked by the
parallelogram); (central panel) zone diagram of the 1D stacks of TSeT; and (right panel) diagram of
the molecular levels of the isolated {TSeT}3

2+ trimer and the TSeT monomer.

The right panel of Figure 4 shows the diagram of the molecular levels of the isolated
{TSeT}3

2+ trimer and the TSeT monomer in the left and right sides of energy axis, respec-
tively, calculated using the same level of theory. For ease of comparison, all energy levels
of trimer and dimer are shifted by the Fermi energy level of the stack (−4.3789 eV). The
analysis of the energy spectrum of the trimer and band structure of the stacks allows us to
conclude that conduction and valence bands are composed mainly of the LUMO and the
HOMO of trimers with ELUMO = −4.2146 eV and EHOMO = −4.8883 eV, and a substantial
contribution to these orbitals is introduced by the atomic orbitals of the selenium atoms.

3. Materials and Methods
3.1. Materials

Tetraselenatetracene (TSeT) purified by sublimation was used. DyIII(hfac)3 was ob-
tained via the interaction of a water solution of DyIIICl3·6H2O with three equivalents of
(K+)(hfac−) (Strem), also dissolved in water. A white powder precipitated, which was
filtered and dried under vacuum and heating for four hours at 80–95 ◦C (86% yield). The
obtained powder was stored in a glove box. o-Dichlorobenzene (C6H4Cl2) was distilled
over CaH2 under reduced pressure, and n-hexane was distilled over Na/benzophenone.
The solvents were degassed and stored in a glove box. All manipulations for the synthesis
of 1 were carried out in an MBraun 150B-G glove box in a controlled atmosphere and with
contents of H2O and O2 of less than 1 ppm. The crystals were stored in the glove box and
were sealed in 2 mm quartz tubes under the ambient pressure of argon for EPR and SQUID
measurements. KBr pellets for the IR- and UV-visible-NIR measurements were prepared in
the glove box.

3.2. Synthesis

TSeT (26 mg, 0.048 mmol), TCNQ (8.5 mg, 0.042 mmol), and DyIII(hfac)3 (31.7 mg,
0.042 mmol) were dissolved in 18 mL of o-dichlorobenzene during 1 day at 60 ◦C. The
solution turned dark green-blue after stirring for one day. All components were dissolved,
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the solution was cooled down to room temperature and filtered into a glass tube of 46 mL
volume, and n-hexane (26 mL) was layered over the obtained solution. Some amount
of light-green powder remained on the filter. It was washed with n-hexane, and the
microprobe analysis showed the presence of DyIII. The IR spectrum supported the presence
of the CN vibrations of TCNQ•− at 2100–2200 cm−1. The slow interdiffusion of n-hexane
and o-dichlorobenzene for 2 months yielded good-quality black crystals with a nugget
shape without any admixtures. The solvent was decanted from the crystals, and they
were washed with n-hexane to obtain crystals at a 34% yield. The composition of crystals
determined from X-ray diffraction was {TSeT1.5}[DyIII(hfac)4] (1). All crystals had the same
shape and color. The same unit cell parameters for several crystals tested from the synthesis
indicated that only one crystal phase was formed. The microprobe analysis showed the
ratio of Dy to Se as 1.0 to 6.1, which is close to the determined composition.

Crystal data for 1 at 100.0(2) K: C47H16DyF24O8Se6, F.W. 1800.86, black nugget,
0.21 × 0.13 × 0.08 mm3, monoclinic, space group P 21/n, a = 10.4467(3), b = 14.7447(5),
c = 33.9861(11) Å, β = 92.1871(12)◦, V = 5231.2(3) Å3, Z = 4, dcalcd = 2.287 M gm−3,
µ = 5.743 mm−1, F(000) = 3392, 2θmax = 61.014◦; 87,873 reflections collected, 15,933 indepen-
dent; R1 = 0.0295 for 12,857 observed data [>2σ(F)] with 840 parameters and 261 restraints;
wR2 = 0.0613 (all data); final GoF = 1.018. CCDC 2362822.

X-ray diffraction data for 1 were collected using a D8 Venture diffractometer (Bruker,
Berlin, Germany) in the ϕ- and ω-scanning modes at the Center for Collective Use of
the Kurnakov Institute of General and Inorganic Chemistry, the Russian Academy of
Sciences (λ = 0.71073 Å, Incoatec IµS 3.0 microfocus X-ray source). Primary indexing,
the refinement of unit cell parameters, and the integration of reflections were performed
using the Bruker APEX3 (version 5.054) and SAINT (version 6.36A) software package [42].
Reflection intensity was corrected for absorption using the SADABS 2016/2 software. The
structures were solved by direct method and refined by the full-matrix least-squares method
against F2 using SHELX 2016 and Olex2 [43,44]. Non-hydrogen atoms were refined in the
anisotropic approximation. Positions of hydrogen atoms were calculated geometrically.
The crystal structure of 1 at 100.0(2) K contains several CF3 groups disordered between
two orientations with the 0.826(11)/0.174(11), 0.653(15)/0.347(15), 0.883(5)/0.117(5), and
0.768(7)/0.232(7) occupancies.

3.3. General

UV-visible-NIR spectra were measured in KBr pellets on a Perkin Elmer Lambda
1050 spectrometer (Perkin Elmer, Shelton, CT, USA) in the 250–2500 nm range. FT-IR
spectra were obtained using KBr pellets with a Perkin-Elmer Spectrum 400 spectrometer
(400–7800 cm−1) (Perkin Elmer, Shelton, CT, USA). EPR spectra were recorded for a poly-
crystalline 1 from room temperature (RT) down to 4.2 K with a JEOL JES-TE 200 X-band
ESR spectrometer equipped with a JEOL ES-CT470 cryostat (JEOL, Akishima, Tokyo, Japan).
A Quantum Design MPMS-XL SQUID magnetometer (Quantum Design, San Diego, CA,
USA) was used to measure the static magnetic susceptibility of 1 in the magnetic field of
1000 Oe under cooling and heating conditions in the 300–1.9 K range. The sample holder
contribution and core temperature-independent diamagnetic susceptibility (χd) were sub-
tracted from the experimental values. The χd values were estimated from the extrapolation
of the data in the high-temperature range and fitting the data with the following expression:
χM = C/(T − Θ) + χd, where C is the Curie constant and Θ is the Weiss temperature.
The dynamic magnetic properties of 1 were studied at 3.0 Oe ac field at the 0.1–1500 Hz
frequencies by a Quantum Design MPMS-5S SQUID magnetometer (Quantum Design, San
Diego, CA, USA).

4. Conclusions

A new method for the preparation of metal hexafluoroacetylacetonate {M(hfac)x} salts
with tetraselenatetracene was developed. This method uses the instability of some M(hfac)x
in the presence of TCNQ•− that allows the precipitation of the insoluble M(TCNQ)x poly-
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mer, but M(hfac)x are dissolved as counter anions due to the addition of hfac− to them. This
approach yields a tetraselenatetracene salt with the [DyIII(hfac)4]− anions. The salt contains
one-dimensional alternating stacks of monomers and weakly dimerized TSeT molecules,
the latter of which show a quasi-one-dimensional conductivity of the semiconducting type
with the activation energy of 91 meV. This is caused by the nonuniform stacks consist of
paramagnetic TSeT monomers and the TSeT dimers, which show a singlet–triplet transition
with a population of a spin triplet state above 128 K. The population of the triplet state
increases the number of carriers in the stacks, and the growth of conductivity is observed
mainly above 150 K. Eight oxygen atoms coordinate to the DyIII ion in [DyIII(hfac)4]−. Sur-
rounding is closer to snub disphenoid or triangular dodecahedron, and such geometry can
provide the appearance of SIM properties. For example, DyIII(hfac)3·(1,10-phenantroline-
5,6-dione) with a similar geometry of the DyIII surrounding also shows SIM properties [28].
SIM properties are also observed in [DyIII(hfac)4]− with Ueff = 40.2 K. As a result, the
compound shows hysteresis at 2 K. Since this SIM is induced by a magnetic field of 1000 Oe,
a hysteresis loop collapses when the magnetic field approaches zero (±900 Oe). Magnetism
and conductivity exist in 1 in different temperature ranges: SIM properties are observed
below 5 K when the conductivity is suppressed, but the conductivity of the semiconducting
type is manifested mainly above 128 K. Nevertheless, weak coupling between paramag-
netic TSeT monomers and the DyIII ions can produce random DyIII pairs with a parallel
arrangement of spins since the EPR signal from the TSeT monomers is strongly broadened
at a low temperature, and a weak increase in the χMT values is observed in 1 below 50 K.
DyIII ions unusually show EPR signal, which is more than one-hundred times more intense
than the EPR signal from TSeT and is not observed above 30 K due to essential broadening.
The EPR signal from DyIII disappears at liquid helium temperatures due to the formation
of a single-ion magnet state. The results of other crystalline salts of the M(hfac)x

− anions
(M = metal) with the donors TSeT and BEDT-TTF will be published in our future article.
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