09,04

Спектральные и структурные характеристики β -NaGd_{1-x}Eu_xF₄ при различных концентрациях ионов Eu³⁺

© А.П. Киселев, В.В. Кедров, С.В. Зайцев, И.И. Зверькова, Т.Н. Фурсова, О.И. Баркалов, К.А. Гавриличева

Институт физики твердого тела им. Ю.А. Осипьяна РАН, Черноголовка, Россия

E-mail: kiselev@issp.ac.ru

Поступила в Редакцию 12 июля 2024 г. В окончательной редакции 18 июля 2024 г. Принята к публикации 19 июля 2024 г.

Образцы β -NaGd_{1-x}Eu_xF₄, где $0 \le x \le 1$, впервые синтезированы гидротермальным методом. Полученные материалы охарактеризованы методами рентгенофазового анализа, электронной микроскопии, ИК- и КРС-спектроскопии. Впервые во всем интервале концентраций европия проведены исследования спектров люминесценции и спектров возбуждения люминесценции β -NaGd_{1-x}Eu_xF₄. Обнаружено отсутствие полного гашения люминесценции системы β -NaGd_{1-x}Eu_xF₄ и показано, что возбуждение люминесценции данной системы посредством возбуждения ионов донора (Gd³⁺) приводит к высокому квантовому выходу люминесценции.

Ключевые слова: двойные фториды редкоземельных элементов, синтез наночастиц, рентгенофазовый анализ, ИК-спектроскопия, КРС-спектроскопия, спектры люминесценции.

DOI: 10.61011/FTT.2024.09.58786.192

1. Введение

В последние годы особенно интенсивно происходит развитие фотоники, лазерной техники и технологий, основанных на квантовых принципах и законах. Одними из материалов, обладающих широким спектром оптических свойств, являются двойные фториды редкоземельных и щелочных элементов, легированных лантанидами [1]. Ионы лантанидов (RE³⁺) имеют характерные особенности электронного строения и являются весьма эффективными в качестве структурно-чувствительных меток, так как свечение RE³⁺-катионов обусловлено переходами внутри $4f^n$ электронной конфигурации. Переходы в $4f^n$ оболочке в значительной степени заэкранированы внешними замкнутыми $5s^2$ и $5p^6$ электронными оболочками, что обуславливает малую ширину линий в спектрах люминесценции. Согласно правилам отбора, электронные переходы внутри 4 fⁿ — оболочки являются запрещенными, однако при помещении иона в кристаллическую решетку такой запрет частично снимается и переходы становятся возможными [2]. Двойные фториды вполне перспективны для использования в качестве люминофоров и сцинтилляторов. Характерными особенностями таких соединений являются большая ширина запрещенной зоны ($\sim 8 \, \text{eV}$) и довольно узкий фононный спектр $(\sim 500\,\mathrm{cm}^{-1})$, что приводит к минимальному тушению возбужденных термов RE³⁺. Соединение NaGdF₄ относится к классу фторидов, состав которых можно описать общей формулой MREF₄, где (М — ион щелочного металла, RE — редкоземельный ион). Данное соединение имеет две кристаллические модификации: кубическую и гексагональную. С практической точки зрения наиболее интересной является гексагональная модификация β -NaGdF₄. Соединения NaYF₄ и NaGdF₄, легированные ионами Yb³⁺ и Er³⁺, обладают хорошими апконверсионными люминесцентными свойствами и перспективны в качестве люминесцентных материалов для биомедицинских приложений [3,4]. Получение этих соединений с размером кристаллов в нанометровом диапазоне открывает широкие возможности использования их в таких направлениях, как фотокатализ, наносенсоры, солнечные элементы, ИК — индуцируемая фотополимеризация, биомедицинские приложения [3]. Среди биомедицинских приложений стоит отметить перспективность этих соединений в качестве материалов для фотодинамической терапии [5].

В работе [6] представлены результаты исследования системы *β*-NaGd_{1-x}Eu_xF₄ в диапазоне концентраций $0 \le x \le 0.3$. В указанной публикации для иона Eu³⁺ определены вероятности переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{2,4,6}$, а также параметры люминесценции Джадда-Офельта Ω_t . Аналогичные исследования были проведены в работе [7], в которой указаны времена жизни возбужденных состояний иона Eu³⁺, а также показано, что модель Джадда-Офельта адекватно описывает фотофизические процессы. Однако использованный в этой работе диапазон концентраций Eu³⁺ ограничен 10 mol%. Представляет интерес провести исследования спектральных люминесцентных характеристик соединения β -NaGd_{1-x}Eu_xF₄ в более широком интервале концентраций ионов Eu³⁺. В настоящей работе исследуются образцы гексагональной фазы β -NaGd_{1-x}Eu_xF₄ ($0 \le x \le 1$), полученные гидротермальным синтезом, представляющие собой в основном наночастицы размером в соответствии с данными электронной микроскопии ~ 100-200 nm. Данный способ синтеза этого соединения в широком интервале концентраций европия был использован впервые. Обычно для получения этого соединения в виде наночастиц требуются специальные условия синтеза. Сообщается о методах получения чистой гексагональной наноразмерной фазы β -NaGdF₄, которые, главным образом, сводятся к следующим: высокотемпературные сольватотермические и гидротермальные методы, термическое разложение трифторацетатов редкоземельных элементов при температурах 250–330°C в присутствии органических растворителей и защитной атмосферы [8]. В качестве органических растворителей используются этиленгликоль, октадекан с олеиновой кислотой или ее амином в качестве сурфактантов.

В работе [9] получены нанокристаллы β -NaGdF₄, допированные 5% Eu³⁺, совмещенным двухэтапным термолизом растворов трифторуксуснокислых солей натрия, гадолиния и европия в оксиде триоктилфосфина сначала при 120°C в вакууме в течение 30 min, а затем 1 h при 350°C, позволившим контролировать морфологию и размерную однородность полученного продукта.

Использование органических растворителей, высоких температур и многостадийность процесса делают известные методы получения β -NaGdF₄ препаративно громоздкими и экологически напряженными. По этой причине проведение синтеза в водной среде представляет особый интерес, однако и в этом случае разработанные методы получения β -NaGdF₄ нельзя назвать простыми и удобными. В работе [10] сообщено о синтезе фазы NaGdF₄: Ce³⁺Eu³⁺ сольватотермальным методом в водной среде с использованием хлоридных и нитратных солей. Синтез проводили в два этапа: при температуре 90°C (2 h) и при 210°C (1 h) с выделением центрифугированием промежуточных продуктов. В итоге получали смесь двух фаз — кубической и гексагональной.

работе [11] синтезированы наночастицы В NaGdF₄: Tb³⁺Eu³⁺ в водной среде в присутствии лимонной кислоты в две стадии: получение частиц $NaGdF_4$: $Tb^{3+}Eu^{3+}$ соосаждением цитратных комплексов редкоземельных элементов и NaF при комнатной температуре с последующей гидротермальной обработкой при 180°С в течение 6 h. В работе [12] наночастицы NaYF₄ были получены методом соосаждения из водных растворов при комнатной температуре по реакции нитрата иттрия с избытком осадителя NaF. В результате получалась смесь гексагональной и кубической фаз NaYF₄, количественное соотношение которых зависело от последовательности совмещения растворов нитрата иттрия и NaF, а также от концентрации исходных растворов.

Разработанный нами гидротермальный одностадийный метод получения наночастиц β-NaGdF₄: Еu является шагом на пути упрощения синтеза этого соединения. В настоящей работе исследуются структурные и спектральные характеристики полученного по данной ме-

тодике продукта в широком диапазоне концентраций и
онов ${\rm Eu}^{3+}.$

2. Методики эксперимента

2.1. Синтез образцов

Наночастицы β-NaGdF₄: Еи были получены соосаждением нитратных солей редкоземельных элементов и фторида натрия в водной среде. Для реакции использовались водные растворы нитратов гадолиния и европия с концентрацией 1.5 M, приготовленные растворением азотнокислых солей $Gd(NO_3)_3 \cdot 5H_2O$ и $Eu(NO_3)_3 \cdot 6H_2O$ в дистиллированной воде, а также водный раствор фтористого натрия с концентрацией 0.9 М. Все использованные реактивы были марки ХЧ. В тефлоновый стаканчик объемом 25 ml заливались растворы нитратов гадолиния и европия, взятые в необходимом соотношении. Общий объем нитратов составлял 2.5 ml. В этот раствор добавлялся водный раствор NaF в количестве 20 ml, так что избыток фтористого натрия от стехиометрического количества был семикратный. Все процедуры по снаряжению тефлонового стаканчика проводились при комнатной температуре. Стаканчик закрывался крышкой и помещался в стальной автоклав, который устанавливали в разогретую до температуры 210°С электропечь и выдерживали там в течение 3-20 h. После этого тефлоновый стаканчик извлекали из печи и после охлаждения вскрывали. Целевой продукт выделяли фильтрованием полученной суспензии, промывали на фильтре водой, спиртом и сушили при 90°С.

2.2. Методы исследований

Рентгенодифракционные исследования проводили с использованием дифрактометра Rigaku SmartLab SE на Си K_{α} -излучении, $\lambda = 1.54178$ Å, 40 kV, 35 mA. Угловой интервал $2\theta = 10-120^{\circ}$. Фазовый анализ образцов и расчет параметров решетки проводили с использованием программ Match и PowderCell 2.4.

ИК-спектры поглощения образцов измерялись на Фурье-спектрометре VERTEX 80v в спектральном диапазоне 30-550 cm⁻¹ с разрешением 2 cm⁻¹. Для измерений суспензия порошков поликристаллов в минеральном масле тонким слоем наносились на полиэтиленовую подложку.

Морфология образцов изучалась с использованием рентгеновского микроанализатора Supra 50VP с приставкой для EDS INCA (Oxford).

Спектры фотолюминесценции (ФЛ) и спектры возбуждения люминесценции изучались на установке, состоящей из источника света — лампы ДКСШ-150, двух монохроматоров МДР-4 и МДР-6 (спектральный диапазон 200–1000 nm, дисперсия 1.3 nm/mm). Регистрация свечения осуществлялась фотоумножителем ФЭУ-106 (область спектральной чувствительности 200–800 nm) и усилительной системой. Монохроматор МДР-4 использовался для изучения спектров возбуждения люминесценции образцов, монохроматор МДР-6 применялся для изучения спектров люминесценции. Спектры люминесценции в дальнейшем корректировались на спектральную чувствительность ФЭУ. Интегральные интенсивности люминесценции вычислялись посредством перевода длин волн в энергетические единицы, далее вычислялись интегралы в диапазоне 575–715 nm, где наблюдались наиболее интенсивные полосы люминесценции образцов. Спектры возбуждения люминесценции корректировались на кривую интенсивности свечения лампы. Спектральные и структурные характеристики исследовали при комнатной температуре.

Измерение спектров комбинационного рассеяния света (КРС) проводили с помощью спектрометра Princeton Instruments HRS 500 с ССД-детектором, охлаждаемым жидким азотом, на дифракционной решетке с плотностью штрихов 1200 штрихов/тт, при комнатной температуре. Для возбуждения использовали лазер KLM-532/SLN-100 DPSS (ФТИ-Оптроник, Санкт-Петербург) с длиной волны 532 nm, мощность излучения на образце составляла примерно 5 mW. Оптическая система работала в геометрии обратного рассеяния, для фокусировки лазерного излучения и сбора рассеянного образцом света применяли объектив 20× Plan Apo Mitutoyo (размер фокального пятна на поверхности образца был $\sim 3 \,\mu m$). Голографический Tydex Notch-6 фильтр (Тидекс, Санкт-Петербург) был использован для дискриминации линии возбуждения, и это позволяло фиксировать КРС-спектры от частоты 200 cm⁻¹. Спектральное разрешение в этом диапазоне составило около 1 ст-1. Точности измерения $\pm 1\,\mathrm{cm}^{-1}$ достигали калибровкой спектрометра по линиям излучения Ne-лампы.

Кинетика свечения образцов исследовалась при $T \sim 300 \, {\rm K}$. Для нерезонансного возбуждения использовался эксимерный ультрафиолетовый (УФ) лазер с длиной волны $\lambda_{\rm L}=308\,{\rm nm}$ (длительность импульса $\sim 10 \, {\rm ns}$, частота импульсов 15 Hz, энергия в импульсе $\sim 2 \,\text{mJ}$). Лазерное излучение фокусировалось на засыпанный в кварцевую кювету порошок в пятно диаметром $\sim 100\,\mu{
m m},$ плотность лазерного возбуждения на поверхности образца Рехс варьировалась с помощью калиброванных градиентных фильтров в широком диапазоне вплоть до $P_{\rm max} \sim 10 \, {\rm MW/cm}^2$ в пересчете на одиночный импульс. Спектры ФЛ регистрировались с помощью спектрометра МУМ, оснащенного охлаждаемым ССД и фотоумножителем ФЭУ-79 с регистрирующим временным интегратором BOXCAR Stanford SR 250, что позволяло регистрировать как интегрированные по времени спектры ФЛ, так и импульсы свечения с разрешением $\sim 20 \, \mu$ s.

3. Рентгеноструктурные исследования

Дифрактограммы порошков β -NaGd_{1-x}Eu_xF₄ (состав по шихте) при $0 \le x \le 1$ приведены на рис. 1.

Рис. 1. Дифрактограммы порошков β -NaGd_{1-x}Eu_xF₄.

Во всем интервале концентраций образцы являются однофазными и имеют гексагональную структуру с пространственной группой SG P(-6) (174), в соответствии с литературными данными для (NaGdF₄)_{1.5} (ICDD N^o 01-080-8787) и (NaEuF₄)_{1.5} (ICDD N^o 01-087-2282).

На рис. 2 показано изменение объема элементарной ячейки гексагональной фазы при изменении состава шихты.

В работе [6] исследована система β -NaGd_{1-x}Eu_xF₄ при $0 \le x \le 0.3$. Для контроля сдвига дифракционных линий при легировании в данной работе выбрана линия (201) в угловом интервале 2θ от 40 до 45°. В настоящей работе для сопоставления мы также выбрали эту дифракционную линию. На рис. 3 показан сдвиг дифракционной линии (201) гексагональной фазы при изменении состава шихты.

Линейное изменение объема элементарной ячейки гексагональной фазы при легировании соответствует закону Вегарда, рис. 2 и 3 являются подтверждением образования твердого раствора β -NaGd_{1-x}Eu_xF₄ во всем интервале концентраций. Увеличение объема элементарной ячейки гексагональной фазы β -NaGd_{1-x}Eu_xF₄ при

Рис. 2. Объем элементарной ячейки β-NaGd_{1-x}Eu_xF₄ в зависимости от состава шихты.

Рис. 3. Положение дифракционной линии (201) гексагональной фазы β -NaGd_{1-x}Eu_xF₄ в зависимости от состава шихты.

росте *х* подтверждает, что происходит замена ионов Gd^{3+} (эффективный ионный радиус в 9-кратной координации 1.247 Å) на ионы Eu^{3+} большего ионного радиуса (1.26 Å) [13]. Сдвиг дифракционной линии (201), выбранной для контроля, в сторону меньших углов при росте *х* также соответствует увеличению объема элементарной ячейки при замещении ионов Gd^{3+} ионами Eu^{3+} , имеющими больший ионный радиус.

Согласно литературным данным значения параметров решетки β -(NaGdF₄)_{1.5} и β -(NaEuF₄)_{1.5} следующие:

(NaGdF₄)_{1.5}:
$$a = 6.0304$$
 Å, $c = 3.6111$ Å,
 $V = 113.73$ Å³ (ICDD № 01-080-8787),
(NaEuF₄)_{1.5}: $a = 6.040$ Å, $c = 3.632$ Å,
 $V = 114.75$ Å³ (ICDD № 01-087-2282).

Полученные нами значения составляют:

(NaGdF₄)_{1.5}:
$$a=6.041$$
 Å, $c=3.600$ Å, $V=113.79$ Å³,
(NaEuF₄)_{1.5}: $a=6.055$ Å, $c=3.626$ Å, $V=115.14$ Å³.

Небольшие отличия в абсолютных значениях параметров решетки обусловлены, по-видимому, несколько отличающимся соотношением элементов в конечном продукте синтеза, что не влияет на имеющиеся закономерности изменения структурных параметров. Соотношение интенсивностей дифракционных линий в исследуемых образцах отличалось от литературных данных, что свидетельствует о наличии текстуры, появляющейся в результате приготовления образцов для дифрактометрии. Поэтому оценка размера областей когерентного рассеяния (ОКР) в данном случае проводилась с учетом инструментального уширения по формуле Шеррера по дифракционной линии (100), размер ОКР составил от 20 до 90 nm.

4. Морфология образцов

На рис. 4 представлены электронно-микроскопические изображения образцов β -NaGd_{1-x}Eu_xF₄ при $0 \le x \le 1$. Во всем интервале концентраций европия наблюдаются агломераты из мелких микрокристаллов округлой формы размером ~ 100–200 nm. В образцах с содержанием европия $0 \le x \le 0.3$ кроме мелких округлых микрокристаллов наблюдаются удлиненные микрокристаллы, имеющие форму стержней длиной ~ $0.5-2\,\mu$ m и толщиной ~ $0.1-0.5\,\mu$ m.

5. ИК-спектроскопия и спектроскопия комбинационного рассеяния света

Как показали результаты рентгеноструктурного анализа, исследуемые образцы соединений β -NaGd_{1-x}Eu_xF₄ (x = 0, 0.1, 0.2, 0.3, 0.5, 0.8, 1) являются однофазными, наноразмерными и имеют гексагональную структуру с пространственной группой P(-6).

Теоретико-групповой анализ, выполненный для кристаллов NaLnF₄ (Ln = La, Ce, Pr, Sm, Eu и Gd) с пространственной группой P(-6), предсказывает наличие 10 фононных мод в ИК-спектре [14]. В этой же работе для объемных кристаллов NaLnF₄ было проведено систематическое исследование поляризованных спектров отражения. Были обнаружены 2 дополнительные колебательные моды в ИК-спектрах и установлено, что влияние замещения ионов Ln на колебательные моды кристалла заключалось, как правило, в ужесточении мод с уменьшением ионного радиуса. Наличие дефектных мод, широкие фононные полосы, наблюдаемые в спектрах отражения кристаллов, по мнению авторов этой работы, свидетельствуют о катионном беспорядке, допускаемом этой структурой.

 $WD = 8 \text{ mm} \qquad \text{Aperture} = 30.00 \ \mu\text{m} \qquad \text{Signal R} = \text{InLens Time:} 11:34:08 \qquad \text{WD} = 8 \text{ mm}$

Рис. 4. Электронномикроскопические изображения β -NaGd_{1-x}Eu_xF₄ (x in batch): a — NaGdF₄; b — NaGd_{0.9}Eu_{0.1}F₄; c — NaGd_{0.8}Eu_{0.2}F₄; d — NaGd_{0.7}Eu_{0.3}F₄; e — NaGd_{0.5}Eu_{0.5}F₄; f — NaEuF₄.

На рис. 5 в частотном диапазоне $40-550 \text{ cm}^{-1}$ представлены спектры ИК-поглощения образцов соединений NaGd_{1-x}Eu_xF₄ (*x* = 0, 0.1, 0.2, 0.3, 0.5, 0.8, 1; спектры *I*-7). Как следует из данных работы [14], рассматриваемый спектральный диапазон характерен для возбуждения оптических фононных мод β -NaGd_{1-x}Eu_xF₄.

В измеренных ИК-спектрах образцов визуально можно выделить 7 широких полос поглощения, обусловленных колебаниями решетки. На рисунке для спектров 1и 7, относящихся к образцам β -NaGdF₄ и β -NaEuF₄, соответственно, даны значения частот максимумов этих полос, определенные по положениям минимумов первой

Рис. 5. Спектры ИК-поглощения β -NaGd_{1-x}Eu_xF₄: I — NaGdF₄; 2 — NaGd_{0.9}Eu_{0.1}F₄; 3 — NaGd_{0.8}Eu_{0.2}F₄; 4 — NaGd_{0.7}Eu_{0.3}F₄; 5 — NaGd_{0.5}Eu_{0.5}F₄; 6 — NaGd_{0.8}Eu_{0.2}F₄; 7 — NaEuF₄.

производной на соответствующих кривых экспериментальных спектров. В работе [15], где исследовалась зависимость ИК-спектров поглощения нанокристаллического порошка NaGdF₄ от размеров кристаллитов, наблюдалось 8 колебательных полос поглощения. Наш спектр β -NaGdF₄ подобен спектру из этой работы.

Полосы поглощения вблизи 65, 110, 176, 220, 283, 344 и $380 \,\mathrm{cm}^{-1}$ в спектре β -NaGdF₄ в соответствии с данными работы [15] могут быть соотнесены следующим образом: низкочастотная полоса $\sim 65\,{
m cm}^{-1}$ связана с трансляционным колебаниям атомов гадолиния, а остальные полосы — с валентным и деформационным колебаниям связей Gd-F и (Na,Gd)-F. Сравнение спектров β-NaGdF₄ и β-NaEuF₄ показывает, что они подобны. В спектре β-NaEuF₄ наблюдается смещение полос до значений вблизи 60, 115, 174, 216, 279, 339 и $373 \,\mathrm{cm}^{-1}$, соответственно. В нашем случае замещения ионов Gd на ионы Eu шесть из семи наблюдаемых колебательных мод смещаются на 2-7 сm⁻¹ в красную область, так как эффективный ионный радиус Eu³⁺ (1.26 Å) больше эффективного ионного радиуса Gd³⁺ (1.247 Å). Противоположный сдвиг моды 110 см^{-1} до 115 см⁻¹ связан с заменой Gd на Eu. Заметим, что частоты практически всех поперечных оптических фононов (TO) для объемных кристаллов NaGdF4 и NaEuF4, приведенные в работе [14], также отличаются незначительно $(1-4 \, \text{cm}^{-1})$. В этой работе частота моды $109 \, \text{cm}^{-1}$ для объемных кристаллов NaGdF4 при замене Gd на Eu также не уменьшается, а возрастает до 111 ст⁻¹. Как видно на рисунке, замещение гадолиния европием и переход от одного состава к другому не изменяет спектра, т.е. каждый предыдущий и последующий спектры состоят из одних и тех же полос поглощения. Это свидетельствует в пользу того, что результаты ИКисследования соединения β -NaGd_{1-x}Eu_xF₄ согласуются с данными рентгеноструктурных исследований о сохранении структуры в широком диапазоне концентраций европия.

На рис. 6 показан спектр КРС образца NaGdF4. Сравнивая представленный спектр со спектрами монокристаллов [14], можно утверждать, что следующие линии являются полосами комбинационного рассеяния света: ~ 248 , 305, 354, 425 сm⁻¹. Полоса ~ 248 сm⁻¹ практически совпадает с полосой, наблюдавшейся в ИКспектрах монокристаллов, которой соответствует ТОфонон [14]. Кроме того, согласно этой же работе, в спектрах КРС монокристаллов для двух ориентаций монокристалла наблюдаются две близкие полосы 244 и $\sim 250\,\mathrm{cm}^{-1}$, которые в результате усреднения большого количества частиц в порошковых образцах способны сформировать полосу $\sim 248 \, {\rm cm}^{-1}$. Полосы $\sim 305, 354$ и 425 cm⁻¹ близки к колебательным модам, наблюдавшимся в спектрах КРС монокристаллов [14]. Более того, полоса $\sim 354\, \mathrm{cm}^{-1}$ наблюдалась в спектрах нанокристаллических порошковых образцов в работе [16]. Полосы ~ 500 и $600\,\mathrm{cm}^{-1}$ отсутствуют в спектрах монокристаллов, однако линия $\sim 500\,{
m cm}^{-1}$ наблюдалась для нанокристаллических образцов NaGdF4 и NaYF4 в работе [16]. Некоторые исследователи наличие в

Рис. 6. Экспериментальный спектр комбинационного рассеяния света образцов β-NaGdF₄.

спектре полос ~ 500 и 600 ст⁻¹ связывают с колебательными модами Na-F [17]. Интерпретация спектров образцов, легированных ионами Eu³⁺, осложняется их люминесценцией в зеленой области спектра и поэтому не приводится.

Спектры люминесценции, возбуждения люминесценции и кривые интегральных свечений

На рис. 7,8 представлены спектры люминесценции образцов NaGd_{1-x}Eu_xF₄. Спектры люминесценции образцов были получены при двух длинах возбуждающего света $\lambda_{ex} = 395$ nm и $\lambda_{ex} = 272.5$ nm. Длина волны $\lambda_{ex} = 395$ nm соответствует резонансной полосе возбуждения ионов европия, при такой длине волны возбуждения происходит непосредственное возбуждение ионов Eu³⁺. Этой полосе соответствует резонансный переход ⁷F₀ \rightarrow ⁵L₆. Длина волны $\lambda_{ex} = 272.5$ nm совпадает с резонансной полосой возбуждения ионов Gd³⁺.

Рис. 7. Спектры люминесценции $NaGd_{1-x}Eu_xF_4$ при возбуждении светом при возбуждении светом с $\lambda_{ex} = 395$ nm.

Рис. 8. Спектры люминесценции $NaGd_{1-x}Eu_xF_4$ при возбуждении светом при возбуждении светом с $\lambda_{ex} = 272.5$ nm.

Указанные полосы возбуждения люминесценции видны на спектрах возбуждения люминесценции (см. рис. 9).

Представленные спектры возбуждения люминесценции образцов с малыми концентрациями ионов европия получены в максимуме полосы люминесценции при $\lambda_{\text{max}} = 615.1 \,\text{nm}$. В спектральном диапазоне $\lambda \sim 270 - 280\,\mathrm{nm}$ полосы обусловлены резонансным возбуждением ионов Gd³⁺ и соответствуют электронному переходу в ионе $\mathrm{Gd}^{3+} {}^8S_{7/2} \rightarrow {}^6I_j$, где j = 11/2, 15/2, 13/2, 9/2, 17/2, 7/2. Спектральные полосы с $\lambda \approx 305$ и 310 nm также обусловлены резонансным возбуждением ионов Gd³⁺ и им соответствует электронный переход ${}^{8}S_{7/2} \rightarrow {}^{6}P_{j}$, где j = 3/2, 5/2, 7/2. Группа спектральных полос, находящихся в диапазоне $\lambda \sim 360-420 \, \text{nm}$, а также полосы при $\lambda \approx 466$ nm, соответствуют полосам возбуждения люминесценции ионов Eu³⁺. Возбуждая люминесценцию образца в полосе $\lambda_{ex} = 272.5$ nm и регистрируя люминесценцию в области спектра 575-715 nm, можно сделать вывод о наличии передачи электронного возбуждения от ионов гадолиния к ионам Eu³⁺. Как видно из представленных рис. 7 и 8, наиболее интен-

Рис. 9. Спектры возбуждения люминесценции β -NaGd_{1-x} Eu_xF₄ (0 $\leq x \leq$ 0.2), полученные при $\lambda_{max} = 615.1$ nm.

сивными полосами люминесценции являются полосы с $\lambda_{\max} \approx 592 \text{ nm}$ и $\lambda_{\max} \approx 615 \text{ nm}$, которые в дальнейшем использовались для исследования кинетики свечения образцов.

При исследовании концентрационных зависимостей спектров люминесценции в кристаллах, легированных редкоземельными ионами (РЗЭ), интенсивности полос свечения могут непропорционально изменяться в зависимости от концентрации РЗЭ [18]. На рис. 10 представлены зависимости интегральной интенсивности полного спектра люминесценции (рис. 7,8) системы NaGd_{1-x}Eu_xF₄ в широком диапазоне концентраций европия ($0 \le x \le 1$). Видно, что максимум интегрального свечения наблюдается в образцах состава x = 0.2. При больших концентрациях Eu³⁺ интегральная интенсивность убывает незначительно и не полностью в отличие, например, от оксидных систем, где полное гашение люминесценции происходит уже при значительно меньших концентрациях ($\sim 10 \, \text{вес.\%}$) Eu³⁺ [18]. Как видно из рис. 10, в данной системе наблюдается довольно слабое гашение люминесценции при x > 0.2.

Для его объяснения необходимо рассмотреть механизмы переноса и гашения энергии между редкоземельными ионами. Рассмотрим возможные причины, которые могут объяснить поведение интегральных кривых свечения. Известно, что интенсивность люминесценции примесных ионов РЗЭ определяется как

$$I_{ab} = A(ab)N_ahv_{ab},\tag{1}$$

где A(ab) — вероятность излучательного перехода между уровнями *а* и *b*, N_a — концентрация возбужденных ионов и v_{ab} — частота перехода, h — постоянная Планка. При возбуждении светом образцов интегральная интенсивность растет вплоть до концентрации европия x = 0.2. Очевидно, что это увеличение связано с увеличением Na. При малых концентрациях ионов Eu³⁺ их можно считать свободными, т.е. пренебречь межионными взаимодействиями. Для проверки этой гипотезы были определены времена затухания свечения образцов. На рис. 11 в полулогарифмическом масштабе представлены кривые затухания интенсивности свечения образцов, полученные при $\lambda_{max} = 615 \, \text{nm}$ для различных концентраций ионов Eu³⁺. Отметим, что кривые свечения при $\lambda_{max} = 592 \, nm$ оказываются подобны кривым свечения при $\lambda_{max} = 615 \, \text{nm}$ с точностью до постоянного множителя, что свидетельствует об излучении из единого начального состояния ⁵D₀. Данным полосам люминесценции соответствуют электродипольный ${}^5D_0 \to {}^7F_2 \ (615 \,\mathrm{nm})$ и магнитодипольный ${}^5D_0 \to {}^7F_1$ (592 nm) переходы. На рисунке видно, что при малых концентрациях ионов Eu^{3+} , а именно x < 0.2, кривые свечения хорошо аппроксимируются прямыми, что свидетельствует о том, что интенсивность люминесценции описывается моноэкспоненциальным законом, и ионы можно рассматривать изолированными друг от друга. Отметим, что кривая свечения для образца состава β -NaGd_{0.8}Eu_{0.2}F₄ (x = 0.2) не описывается простым моноэкспоненциальным законом, а имеет несколько ком-

Рис. 10. Концентрационная зависимость интегральной интенсивности люминесценции при возбуждении светом: $I - \lambda_{ex} = 395$ nm; $2 - \lambda_{ex} = 272.5$ nm.

x	$ au_{\mathrm{exp}},\mathrm{ms}$		Среднее время
в β -NaGd _{1-x} Eu _x F ₄	$\lambda=615nm$	$\lambda = 592\text{nm}$	затухания $\bar{\tau}_{exp}$, ms
0.003	9.0	8.95	8.98
0.006	9.14	8.48	8.81
0.013	9.25	8.77	9.01
0.02	9.25	8.85	9.05
0.04	8.69	8.70	8.70
0.10	7.46	7.52	7.49
0.15	7.84	7.97	7.91
0.20	7.74	7.27	7.51
0.50	3.21	3.27	3.24
0.80	2.42	2.68	2.55
1.00	2.68	2.56	2.62

Времена затухания люминесценции при разных концентрациях ионов Eu^{3+}

понент (см. рис. 11). Такое сложное поведение может быть связано со стимулированными процессами, на что также указывает максимум интенсивности светимости при этой концентрации (рис. 10) и требует отдельного детального исследования. В таблице приведены времена затухания (τ_{exp}), измеренные при длинах волн люминесценции $\lambda = 615$ nm и $\lambda = 592$ nm, а также средние значения времен затухания $(\bar{\tau}_{exp})$ свечения образцов β -NaGd_{1-x}Eu_xF₄ при 0.003 $\leq x \leq$ 1. Согласно таблице, наблюдается зависимость времен затухания люминесценции от концентрации легирующей добавки. Сокращение $\bar{\tau}_{exp}$, по-видимому, свидетельствует об увеличении межионного взаимодействия между ионами Eu³⁺ с ростом концентрации европия. Среднее время затухания люминесценции для образцов с x = 0.003 составляет $\bar{\tau}_{exp} \sim 9 \,\mathrm{ms}$, которое можно рассматривать как значение времени жизни возбужденного состояния $^{5}D_{0}$.

При x = 0.5, 0.8 и 1.0 временные зависимости люминесценции слабо отличаются от моноэкспоненциальных зависимостей, что также свидетельствует о слабом межионном взаимодействии ионов Eu^{3+} . При x = 0.20наблюдается наибольшее отличие кинетики свечения от моноэкспоненциальной зависимости. В этом случае среднее время затухания оценивалось как [6]:

$$\tau_{\text{mean}} = \frac{\int_{0}^{t_{\text{max}}} (t) t dt}{\int_{0}^{t_{\text{max}}} (t) dt},$$
(2)

где I(t) — интенсивность свечения материала, t_{max} — время измерения. Расчет по формуле (2) приводит к значениям $\tau_{\text{mean}} = 7.74$ и 7.27 ms.

Из данных таблицы следует, что с ростом концентрации ионов европия сокращается время затухания люминесценции образцов, что в свою очередь связано с процессами тушения люминесцении. Известно, что время жизни излучательного терма τ_0 связано с вероятностями электронных переходов иона [19]:

$$\tau_0^{-1} = \sum_k A_{jk} + W.$$
(3)

В данной формуле τ_0 — время затухания центра свечения, обусловленного только внутрицентровыми переходами, $\sum_{k} A_{ik}$ — сумма вероятностей излучательных переходов с уровня *j* на уровни *k*. В случае иона Eu^{3+} это сумма вероятностей переходов ${}^5D_0 \rightarrow {}^7F_J$, где J = 1, 2, 4, 6; W — скорость безызлучательной многофононной релаксации между возбужденными мультиплетами [19]. В ионе европия имеется уникальный переход, позволяющий рассчитывать вероятности переходов в спектрах люминесценции. Дело в том, что в спектрах люминесценции присутствует разрешенный магнитный переход ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, вероятность которого практически не зависит от кристаллической матрицы и точечной симметрии локального окружения центра. Таким образом, сравнивая интенсивности спектральных полос, можно оценить вероятности других спектральных переходов, например, перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, а также рассчитать параметры люминесценции и время жизни возбужденного состояния. В работе [6] для рассматриваемой системы NaGdF₄: Eu было определено время жизни уровня ${}^{5}D_{0}-7.5$ ms. Более того, согласно этой же работе, вероятность перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ равна $\approx 48 \, {\rm s}^{-1}$. Оценку экспериментального значения W — скорости безызлучательной многофононной релаксации можно сделать из сравнения излучательного времени жизни т при данной концентрации и измеренного времени жизни терма ${}^{5}D_{0}$ [19]. В исследованных образцах при низких концентрациях Eu³⁺ измеренное время свечения $\tau_0 \sim 9 \,\mathrm{ms}$ оказывается длинее времени $\tau_0 = 7.5 \,\mathrm{ms}$, полученного в работе [6],

Рис. 11. Кривые затухания люминесценции в полулогарифмическом масштабе, снятые при $\lambda_{max} = 615$ nm.

что можно отнести к отличию в технологии синтеза. Исходя из экспериментальных данных, можно вычислить интервал скоростей безызлучательной многофононной релаксации W (см. формулу (4)), которая составляет от 0.3 до $280 \,\mathrm{s}^{-1}$ при изменении концентрации ионов Eu^{3+} от x = 0.006 до x = 1.00:

$$W = \tau_0^{-1} - \tau^{-1}.$$
 (4)

Исходя из этих данных, квантовый выход η люминесценции равен [19]:

$$\eta = \sum_{k} A_{jk} / \left(\sum_{k} A_{jk} + W \right).$$
 (5)

Расчет по данной формуле дает значения $\eta \approx 30-90\%$. Проведенные оценки показывают, что в рассматриваемой системе имеются небольшие потери энергии электронного возбуждения при лазерном возбуждении. Более точные оценки квантового выхода требуют измерений температурных зависимостей $\tau_0(T)$. Таким образом, можно сделать вывод: если возбуждение ионов Eu³⁺ происходит путем передачи энергии электронного возбуждения от ионов Gd³⁺, как в изучаемом случае, то данный материал можно рассматривать в качестве эффективного люминофора при ультрафиолетовом возбуждении.

На основе экспериментальных данных, представленных в данном пункте, можно провести следующие рассуждения. При малых концентрациях ионов европия, их можно рассматривать изолированными друг от друга, что подтверждают кривые затухания люминесценции. Кривые интегральной светимости образцов показывают, что в образцах отсутствует полное гашение люминесценции, что в свою очередь связано с механизмом передачи энергии между ионами гадолиния и европия. Одним из возможных механизмов передачи энергии является резонансный механизм [20,21]. Как известно, для его реализации требуется перекрытие спектров люминесценции донора со спектром поглощения акцептора. В рассматриваемой системе необходимо, чтобы спектр свечения Gd³⁺ существенно перекрывался со спектром поглощения Eu³⁺. Спектры возбуждения люминесценции образцов β -NaGd_{1-x}Eu_xF₄ при 0.003 < x < 0.1 содержат спектральные полосы Gd³⁺, которые должны перекрываться с полосами возбуждения люминесценции ионов Eu³⁺, существующими в интервале длин волн ~ 360-420 nm. Можно утверждать, что перекрытие спектров практически отсутствует, а значит резонансный механизм не реализуется. Наиболее вероятным механизмом передачи возбуждения является нерезонансный механизм передачи энергии, при котором требуется, чтобы излучение донора было более коротковолновым, чем излучение акцептора [20,21]. Это и реализуется в случае пар Gd³⁺-Eu³⁺, наблюдаемые наиболее интенсивные полосы Gd³⁺ находятся при $\lambda \sim 273$ и ~ 311 nm. При x > 0.2 имеющееся незначительное отклонение кривых затухания люминесценции от прямолинейных зависимостей указывает на то,

что существует межионное взаимодействие. Как видно из таблицы, при x > 0.15-0.20 наблюдается сокращение времен затухания свечения образцов β -NaGd_{1-x}Eu_xF₄, что говорит об увеличении межионных взаимодействий и возможном процессе миграции энергии электронного возбуждения [22]. Можно предположить, что миграция электронного возбуждения при возбуждении ионов Gd³⁺ происходит эффективно, о чем свидетельствуют значения параметра безизлучательной многофононной релаксации $W \approx 0.3-280$ сm⁻¹ и значения квантового выхода люминесценции $\eta \approx 30-90\%$.

7. Заключение

В настоящей работе впервые методом гидротермального синтеза были получены образцы β -NaGd_{1-x}Eu_xF₄, где $0 \le x \le 1$, проведены исследования их структуры, морфологии, ИК- и КРС-спектров, спектров люминесценции и спектров возбуждения люминесценции, определены времена затухания свечения синтезированных образцов.

Методом рентгенофазового анализа показано, что рассматриваемые образцы являются однофазными во всем интервале концентраций. Полученные линейные зависимости объема элементарных ячеек образцов, а также сдвига выбранной для контроля дифракционной линии (201) от состава шихты позволяют сделать однозначный вывод о получении твердого раствора β -NaGd_{1-x}Eu_xF₄. По результатам электронной микроскопии полученные образцы представляют собой в основном нанокристаллы с размером частиц $\sim 100-200$ nm.

Измеренные спектры ИК-поглощения соединения β -NaGd_{1-x}Eu_xF₄ согласуются с данными рентгеновских исследований о сохранении структуры во всем диапазоне концентраций европия.

Впервые исследованы спектры люминесценции и спектры возбуждения люминесценции твердых растворов β -NaGd_{1-x}Eu_xF₄ во всем интервале концентраций $0 \le x \le 1$. Обнаружено отсутствие полного гашения люминесценции системы β -NaGd_{1-x}Eu_xF₄ и показано, что возбуждение люминесценции данной системы посредством возбуждения ионов донора (Gd³⁺) приводит к высокому квантовому выходу люминесценции ($\eta \approx 30-90\%$), что указывает на возможность применения данной системы в качестве эффективного люминофора, в том числе и для медико-биологических задач.

Благодарности

Авторы выражают благодарность ЦКП ИФТТ РАН за характеризацию образцов методами рентгенофазового анализа, ИК-спектроскопии и комбинационного рассеяния света, а также электронной микроскопии.

Финансирование работы

Работа выполнена в рамках госзадания ИФТТ РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] П.П. Федоров, В.В. Семашко, С.Л. Кораблева. **58**, *3*, 235 (2022).
- [2] М.А. Ельяшевич. Спектры редких земель. ГИТТЛ, М. (1953). 456 с.
- [3] Д.Н. Каримов, П.А. Демина, А.В. Кошелев, В.В. Рочева, А.В. Соковиков, А.Н. Генералова, В.П. Зубов, Е.В. Хайдуков, М.В. Ковальчук, В.Я. Панченко. Рос. нанотехнологии 15, 6, 699 (2020).
- [4] Ch. Liu, Zh. Gao, J. Zeng, Yi Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, M. Gao. ACS Nano 7, 8, 7227 (2013).
- [5] Д.В. Поминова, А.С. Богатова, В.Ю. Пройдакова, И.Д. Романишкин, Е.В. Ахлюстина, С.В. Кузнецов, Т.А. Савельева, Е.А. Лукьянец, В.Б. Лощенов. Biomed. Photon. 10, 4, 23 (2021).
- [6] Y. Cheroura, Z. Smara, A. Potdevin, D. Boyer, A. Chafa, O. Ziane, R. Mahiou. Mater. Res. Bull. 125, 110809 (2020).
- [7] С.А. Буриков, О.Д. Котова, О.Э. Сарманова, С.В. Кузнецов, В.Ю. Пройдакова, В.В. Воронов, П.П. Федоров, С.В. Пацаева, Т.А. Доленко. Письма в ЖЭТФ 111, 9, 625 (2020).
- [8] H. Mai, Y. Zhang, L. Sun, C. Yan. J. Phys. Chem. 111, 13730 (2007).
- [9] M. Banski, A. Podhorodeski, J. Misiewicz, M. Afzaal, A.L. Abdelhady, P. O'Brien, J. Mater. Chem. C 1, 801 (2013).
- [10] М.А. Солдатов, П.В. Медведев, В.В. Бутова и др. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 1, 10 (2021).
- [11] M. Ranasinghe, Md. Arifuzzaman, A.C. Rajamanthrilage, W.R. Willoughby, A. Dickey, C. McMillen, J.W. Kolis, M. Bolding, J.N. Anker. RSC Adv. 11, 31717 (2021).
- [12] Д.С. Ясыркин. Канд. дис. "Разработка методов синтеза нанодисперсного люминофора NaYF₄: Yb,Er для биомедицинских исследований". М. (2014) //chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.issp.ac.ru/ ebooks/disser/Yasyrkina_D_S.pdf
- [13] Y.Q. Jia. J. Solid State Chem. 95, 184 (1991).
- [14] M.M. Lage, R.L. Moreira, F.M. Matinaga, J.-Y. Gesland. Chem. Mater. 17, 4523 (2005).
- [15] A. Bednarkiewicz, M. Mączka, W. Strek, J. Hanuza, M. Karbowiak. Chem. Phys. Lett. 418, 75 (2006).
- [16] M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, Ah.L. Abdelhady, P. O'Brien. J. Mater. Chem. C 1, 4, 801 (2013).
- [17] D. Yuan, M.Ch. Tan, R.E. Riman, G.-M. Chow. J. Phys. Chem. 117, 25, 13297 (2013).
- [18] М.И. Гайдук, В.Ф. Золин, Л.С. Гайгерова. Спектры люминесценции европия. Наука, М. (1974). 195 с.
- [19] А.М. Ткачук, М.В. Петров, А.В. Хилько. В сб.: Спектроскопия кристаллов / Под ред. А.А. Каплянского. Наука, Л. (1983). С. 106.

- [20] Г.М. Зверев, И.И. Куратев, А.М. Онищенко. В сб.: Спектроскопия кристаллов / Под ред. А.А. Каминского и др. Наука, М. (1975). С. 184.
- [21] М.Н. Толстой. В сб.: Спектроскопия кристаллов / Под ред. С.В. Грум-Гржимайло и др. Наука, М. (1970). С. 124.
- [22] Н.В. Знаменский, Ю.В. Малюкин. Спектры и динамика оптических переходов редкоземельных ионов в кристаллах. Физматлит, М. (2008). 192 с.

Редактор А.Н. Смирнов