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Abstract—On the basis of phenomenological theory in the Landau approximation, a model is developed to
describe experiments on measuring the nanohardness of two-component titanium-based solutions when tor-
sion is applied under high pressure. The possible mechanisms for the appearance in the experiment of asym-
metry of this magnitude relative to the middle of the radius of a cylindrical sample are determined. Addition-
ally, the behavior of the radial and angular components of nanohardness in the presence of a point defect in
the material is studied.
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INTRODUCTION
Currently, titanium alloys are widely used in indus-

try [1–4]. The characteristics of these compounds can
be purposefully changed using various alloying ele-
ments [5–7]. However, today the need for fundamen-
tally new structural materials is increasing [8–10]. For
example, hardened heat-resistant alloys can no longer
fully meet the requirements of aerospace technology.
Therefore, there is a need to study alloys with other
possible additives. In [11], the nanohardness (H) and
Young’s modulus (E) were measured for three alloys:
Ti–2.5 wt % Ni, Ti–2 wt % Cr, and Ti–2.2 wt % Fe,
pre-annealed in the two-phase region of the phase
diagram (αTi + intermetallic compound) and then
subjected to torsion under high pressure. The titanium
alloy with the addition of nickel showed the highest
values of H and E; they change uniformly from the
center to the edge of the sample, and after torsion
under high pressure, the alloy contained two phases: α
and ω phases. The nanohardness of the alloy Ti–
2.5 wt % Ni along the radius of the sample over the
surface changes slightly: from a minimum value of 4.8
GPa to a maximum value of 5.2 GPa, as does Young’s
modulus (from 121 to 155 GPa). The maxima of the H
and E values fall in the middle of the sample radius.
Ti–2.2 wt % Fe alloy behaves differently: the presence
of four phases in it (α, β, ω, and TiFe) leads to a large
scatter in the measured values of H and E: from 4.4 to

2.0 GPa and from 131 to 12 GPa, respectively. The
processing of P–h diagrams (here P is the load magni-
tude, h is the indentation depth) made it possible to
relate the nanohardness of the material to its creep.
However, this study is purely experimental in nature,
and, therefore, there is a need for theoretical under-
standing of the results obtained. In this work, the
problem is considered using the phenomenological
theory of Landau.

CALCULATION METHOD

Landau’s theory showed good results when study-
ing two-component copper-based solutions [12–18]
beyond the region of elasticity. Satisfactory agreement
with the experiment was obtained by studying the
shifts of phase boundaries when applying nondestruc-
tive torsion under high pressure, a change in the lattice
parameters, and kink propagation. In these works, the
dependence of the torsion moment on the number of
revolutions is approximated by a hyperbolic tangent.
Since the dependence of the observed parameters on
the moment is not investigated in this study, the corre-
sponding value will not appear explicitly and will be
included in the phenomenological constants. In addi-
tion, the potential will not include the Lifshitz invari-
ants, which are responsible for the formation of a spi-
ral structure with a propagation vector along the OZ
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axis, since effects arising in the perpendicular XOY
plane are considered. As stated above, this will be the
distribution of the order parameter over the radius and
angle in the XOY plane, as well as the nanohardness in
an ideal crystal and in a crystal with one point defect.

It was noted in [19] that two-component solutions
are not actually crystals, since they do not have a lat-
tice structure. However, if we apply the virtual crystal
approximation [20], then translational invariance is
restored and a generalized vector order parameter can
be introduced, which characterizes the change in the
linear dimensions and the shape of the unit cell of the
virtual lattice under certain influences. In an experi-
ment, this is expressed in a change in the interplanar
distance in the crystal lattice and a change in its
parameters [21, 22]. Therefore, when considering the
task at hand, Landau’s phenomenological theory can
be applied. Let us write the nonequilibrium thermody-
namic potential in the form:

(1)

where αi and γi (i = 1, 2, 3) are the phenomenological
parameters, the terms with derivatives describe the
inhomogeneities of the structure in the XOY plane, the
last two sums are responsible for the interaction with
nearest neighbors, and q(x, y) is the order parameter.

In the experiment described in [11], the sample is
actually acted upon by two torques directed in differ-
ent directions. These moments lead to different signs
of deformation of the edge and center of the sample.
As a result, as indicated in [11], in the case of an ideal,
impurity-free sample, annihilation occurs at half the
radius, and there is no deformation. In fact, there is an
anti-symmetric distribution of the order parameter
relative to the unperturbed state and the maximum
strength of the sample at half the radius. However, the
presence of any defect leads to a violation of symmetry
and distortion of the distribution of the order parame-
ter along the radius.

Let two opposite moments be instantly applied to
the sample. Let us consider the time distribution of the
order parameter over the radius and angle. The time

( ) ( )

( ) ( ) ( )

( )( )
( ) ( )( )

( )( )
( ) ( )( )

=

=

 ∂ ∂  Φ = γ +     ∂ ∂    
αα α+ + +

+ γ + − Δ

× + − Δ

+ γ + − Δ

× + − Δ





22

0 1

2 4 631 2

2

2
1

2 2

2

2
1

2 2

, ,

, , ,
2 4 6

,  1 ,

,   1 ,

, ,  1

,   , 1 . 

i

i

i

i

i

i

q x y q x y
x y

q x y q x y q x y

x x x y

q x y q x x y

x y y y

q x y q x y y

dependence of the order parameter during the imposi-
tion of torsion under high pressure is described using
the Landau–Khalatnikov equation in the form:

(2)

where Φ is the free energy functional,

is the functional derivative, t is time, γii (i = x, y) is the
matrix of kinetic coefficients characterizing the rate of
relaxation of the system to the equilibrium position,
and qi are the components of the vector order param-
eter of the system. In what follows, we will assume that
the kinetic coefficients γii (i = x, y) are constant and,
for simplicity, we will neglect cross effects between
different components of the order parameter yxy =
yyx = 0. The order parameter is a linear combination of
atomic displacements during phase transition. In
experiment, this is expressed in a change in the inter-
planar distance in the crystal lattice and its parameters
[21, 22].

Since a cylindrical sample was used in the experi-
ment, let us consider the problem in a cylindrical
coordinate system, after transition to which we obtain:

(3)

where r and ϕ are polar coordinates characterizing the
position of the atom, and Δr and Δϕ are the radial and
angular distances to the nearest neighbors.

RESULTS AND DISCUSSION
Let us consider two situations: an ideal crystal and

a crystal, in which a point defect is located at some dis-
tance from the center. In the first case, in the absence
of slipping, the boundary conditions when solving Eq.
(3) must be the same in modulus and different in sign.
By analogy with the results of [13–15], it can be
assumed that there are different values of unit-cell dis-
tortion at different annealing temperatures. Also, at a
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certain annealing temperature, there should be a
steady state, in which there is no deformation of the
unit cell; this is confirmed by the results obtained in
[3–5]. That is, this state has the greatest nanohard-
ness, and when torsion is applied under high pressure,
theoretically no changes occur. It follows from this
that all graphs of the dependence of nanohardness on
radius should have a common maximum point corre-
sponding to the steady state. The results of calculation
are presented in Fig. 1 and qualitatively show the dis-
tribution of the order parameter along the radius at
different moments of time under the condition that
there is a high annealing temperature and, accord-
ingly, low initial distortion. Figure 2 shows the corre-
sponding distribution of nanostrength values HP
along the radius, which was calculated using the for-
mula:

(4)

where a is the parameter of the undeformed lattice, q
is the deviation of the lattice parameter from the ideal
one, which actually coincides with the earlier intro-
duced order parameter, and R is an insignificant
parameter for qualitative consideration.

It can be seen that, in accordance with the above
reasoning, the distortions in the middle of the radius
are equal to zero (Fig. 1). Consequently, the maxi-
mum hardness is located here (Fig. 2). However, in the
final state, the behavior of the HP graph differs from
the experimental data (Fig. 2, [11]). Apparently, this
discrepancy is caused by a small number of measure-
ments. As is known from statistics, for the reliable
interpretation of any curve it is necessary to have three
more measurement points than curve parameters. In
particular, a straight line has two parameters. There-
fore, in order for the sampling of experimental mea-
surements to be representative for the reliable interpre-
tation of a linear relationship, it is necessary to have a
minimum of five experimental points. Any curve has a
larger number of parameters and, therefore, a larger
sampling size is necessary. In [11], the curve of
strength in Fig. 2 is based on three points, which is
clearly not enough for reliable interpretation of the HP
behavior. Another possible reason could be the
approach of the nearest neighbors. In a real crystal, a
large number of atoms participate in the interaction.
One cannot exclude the possibility that the theory is
incomplete and does not take into account some
important mechanisms that influence the behavior of
the order parameter during torsion.

It is of interest to study the behavior of the order
parameter and HP under conditions of sample slip-
ping, which can occur both at the center and at the
edges. In this case, a steady state may not be achieved.

=
+

,aHP R
a q

Two types of slipping should be distinguished: strong,
in which deformations at the center and the edges are
of the same sign and different in modulus; and weak,
in which the deformations at the center and the edges
are different in sign and modulus. Figures 3 and 4
show graphs of the HP time dependence in the case of
strong and weak slipping. In the case of strong slip-
ping, there is no central peak in the graph of the hard-
ness dependence (Fig. 3) and the curve qualitatively
coincides with the corresponding dependence for Ti–
2.2 wt % Fe (Fig. 2, [11]).

Figure 5 shows the HP dependence in the case
when the values of the order parameter at the center
and at the edge are approximately equal to the steady-
state one and less, but different in modulus. It can be
seen that there is no maximum within the range of

Fig. 1. Time-finite distribution of the order parameter
along the radius.
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Fig. 2. Distribution of sample hardness along the radius:
dashed, dash-dotted, and solid lines indicate the initial
moment of time, intermediate time value, and final state,
respectively.
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radius values, and the curve qualitatively corresponds
to the experimental curve for Ti–2 wt % Cr (Fig. 2,
[11]). If the order parameter at the center is approxi-
mately equal to the steady-state one and greater than
its value at the edge, a local maximum appears (Fig. 6),
which indicates that the steady state is achievable.

Let us assume that at a certain value of the radius
not equal to the middle and at a certain angle, there is
a point defect, which is characterized by a certain
value of the order parameter. Figure 7 shows the time
evolution of the radial distribution of the order param-
eter in the direction of the defect. It is obvious that the
anomaly introduces a significant disturbance into the

distribution. At the point, where the defect is located,
a local minimum in the nanostrength is observed.
There is also a local maximum, which indicates the
intersection of the steady state. Of interest is the distri-
bution of nanostrength over an angle in the vicinity of
the point, where the defect is located. Figure 8 shows
the dependence of the order parameter on the angle,
and Fig. 9 shows the corresponding dependence of the
nanostrength. It can be seen that these dependences
are oscillatory in nature. Due to the fact that the curve
of the order parameter turns to zero four times, there
are four symmetrical points of maximum nanohard-
ness (Fig. 9).

Fig. 3. Distribution of the sample hardness along the
radius in the case of strong slipping: dashed, dash-dotted,
and solid lines indicate the initial time, intermediate time
value, and final state, respectively.
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Fig. 4. Distribution of the sample hardness along the
radius in the case of weak slipping: dashed, dash-dotted,
and solid lines indicate the initial time, intermediate time
value, and final state, respectively.
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Fig. 5. Distribution of the sample hardness along the
radius in the case of strong slipping: dashed, dash-dotted,
and solid lines indicate the initial time, intermediate time
value, and final state, respectively. The order parameter at
the center is less than the steady-state one.
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Fig. 6. Distribution of the sample hardness along the
radius in the case of weak slipping: dashed, dash-dotted,
and solid lines indicate the initial time, intermediate time
value, and final state, respectively. The values of the order
parameter at the center and at the edges are of different
signs with respect to the steady-state one.
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CONCLUSIONS
On the basis of phenomenological theory in the

Landau approximation, it is shown that in an ideal
compound, the maximum nanohardness under high
pressure torsion is in the middle of the radius of a
cylindrical sample.

The assumption of the possibility of sample slip-
ping at the edges and in the center allowed explanation
of the asymmetry of the nanohardness values relative
to the middle of the radius and the shift of the maxi-
mum nanohardness.

The presence of a point defect in the sample leads
to significant distortion of the dependence of the
radial and angular components of nanohardness. At
the location of the defect, there is a local minimum of
nanohardness, and in the immediate vicinity, the
radial and angular components acquire an oscillating
character.
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