Истомин С.Я.

Химический факультет МГУ им. М.В. Ломоносова

Катодные материалы для ТОТЭ на основе перовскитоподобных оксидов 3d-металлов

<u>Школа для молодых ученых</u> <u>"Современные аспекты высокоэффективных твердооксидных топливных элементов и энергоустановок на их основе"</u> <u>16-17 ноября 2017 года</u>

Source: Forshungszentrum Juelich

Требования к катодному материалу

- высокая электрокаталитическая активность в реакции восстановления кислорода;
- ✓ высокая электронная и кислород-ионная проводимость;
- ✓ КТР катодного материала должен быть близок к КТР материала электролита (12.5 ppm K⁻¹ GDC и 10.5 ppm K⁻¹ YSZ);
- ✓ должно отсутствовать химическое взаимодействие между материалами
 электролита и катода, сопровождающееся образованием новых фаз,
 затрудняющих транспорт носителей заряда;
- ✓ катодный материал должен быть устойчив в атмосфере катодных газов.

Катодный материал La_{1-x}Sr_xMnO_{3+y} (LSM)

Катодный материал La_{1-x}Sr_xMnO₃ (LSM)

Для LSM R_η растет от <1 Ом/см² при 1000°С до 2000 Ом/см² при 500°С!!!

Fig. 19 Typical polarization curves for the O_2 reduction on a LSM cathode in air at different temperatures after Jiang [90]. LSM cathode was polarized at 200 mA cm⁻² and 900 °C for 2 h before the measurements

S.P. Jiang, J Mater Sci (2008) 43:6799–6833 A.J.Jacobson. Chem. Mater., 22, 660 (2010)

Механизм восстановления кислорода на катоде ТОТЭ

LSCF: (La,Sr)(Co,Fe)O_{3-v}

LSM: (La,Sr)MnO₃

Определение D* и k: вторично-ионная масс-спектрометрия (IEDP-SIMS)

Определение доли ¹⁸О в зависимости от глубины

ASR < 0.2 Ом×см² _{отвечает} D* × k > 10⁻¹⁴ или D* > 10⁻⁸ cm²/s → к ≈10⁻⁶ cm/s

Оксид	D*, см²/сек	k, см/сек	D*k, см³/сек²
La _{0.5} Sr _{0.5} MnO ₃ (800°C)	8 x 10 ⁻¹⁴	1.33 x 10 ⁻⁷	10.6 x 10 ⁻²¹
La _{0.9} Sr _{0.1} FeO _{3-y} (850°C)	8.5 x 10 ⁻¹⁰	2.9 x 10 ⁻⁸	2.5 x 10 ⁻¹⁷
La _{0.8} Sr _{0.2} CoO _{3-y} (800°C)	2 x 10 ⁻⁸	5 x 10 ⁻⁶	1.0 x 10 ⁻¹³
Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-y} (700°C)	5 x 10 ⁻⁷	1 x 10 ⁻⁴	5 x 10 ⁻¹¹
PrBaCo ₂ O _{5+y} (400°C)	9.96 x 10 ⁻⁸	1.44 x 10 ⁻⁶	3.9 x 10 ⁻¹³
La2NiO4+y (800°C)	1.71 x 10 ⁻⁷	2.55 x 10⁻ ⁶	7.4 x 10 ⁻¹³
La ₂ CuO _{4+y} (700°C)	1 x 10 ⁻⁸	1 x 10 ⁻⁶	1 x 10 ⁻¹⁴

Кандидаты на роль катодного материала в среднетемпературном ТОТЭ

Кислород-дефицитные перовскиты (La,M)BO_{3-у,} где М – РЗЭ и/или ЩЗМ катионы, В - d-металл:

Структура перовскита АВО₃

Перовскиты (La,M)ВО_{3-у}:

- ✓ Высокая электронная проводимость
- ✓ Наличие кислород-ионной проводимости
- ✓ Каталитическая активность в реакции восстановления кислорода

Source: Forshungszentrum Juelich

АСоОз-у как катодные материалы ТОТЭ

R.A. De Souza, J.A. Kilner / Solid State Ionics 106 (1998) 175-187

٧

 Высокая электронная проводимость (La,Sr)CoO_{3-y} ~1000 См/см при 900°С

2) Высокая О-ионная проводимость3) Высокая каталитическая активностьв реакции восстановления кислорода

НО Высокий КТР

LaCoO₃, KTP = 21 ppm K⁻¹

YSZ (Zr_{1-x}Y_xO_{2-x/2}), 10.5 ppm K⁻¹ GDC (Ce_{1-x}Gd_xO_{2-x/2}), 12.5 K⁻¹

КТР перовскитов 3d-металлов

Перовскит	КТР, рртК ⁻¹		
LaMnO ₃	10.7		
La _{0.6} Sr _{0.4} MnO ₃	11.8		
LaFeO ₃	9.5		
$La_{0.6}Sr_{0.4}FeO_3$	14.6	-	
LaCoO ₃	21		
La _{0.6} Sr _{0.4} CoO ₃	18		
LaNiO ₃	13.2		

Спиновое состояние катионов Со³⁺

Raccah and Goodenough, Phys. Rev. 155, 932 (1967) Yamaguchi et al., Phys. Rev B 53, R2926 (1996)

Решение #1: Нужен оксид с Со³⁺ в НS состоянии

S.Ya. Istomin et al. Dalton Trans. 44 (2015) 10708-10713

XAS: Co $L_{2,3}$ and O K edge

Sensitive to:

- Oxidation state
- Spin state
- Local coordination


```
XAS study
Co L_{2,3} edge of Sr_2Co_{1,2}Ga_{0,8}O_5
```


S.Ya. Istomin et al. Dalton Trans. 44 (2015) 10708-10713

Решение #2: Частичное замещение Со³⁺ на другие катионы

 $La_{1-x}Sr_{x}Co_{1-y}Fe_{y}O_{3-z}$ (LSCF)

"Оптимальный" состав: La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O_{3-y} (LSCF6428)

Temperature (°C)

Решение #2: Частичное замещение Со³⁺ на другие катионы

 $Ba_{1-x}Sr_{x}Co_{1-y}Fe_{y}O_{3-z}$ (BSCF)

1.0

0.8

0.6

0.2

0.0

Voltage (V)

10-20 мкм Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-v}/ 20 MKM GDC/700 MKM Ni-GDC

2,000

Current density (mA cm-2)

3,000

1,000

Z. Shao, S. Haile, Nature 431 (2004) 170-173

Деградация в присутствии СО₂

Кандидаты на роль катодного материала в среднетемпературном ТОТЭ

Кислород-дефицитные перовскиты (La, M) ВО_{3-у.} где М – РЗЭ и/или ЩЗМ катионы, В - d-металл:

Структура перовскита ABO₃

падает

Для оксидов с B=Ni и Cu:

Снизить степень окисления В-катиона до +2 можно внедрением блока LaO^+ : $La_2B^{2+}O_4$ ($LaO^+ + LaBO_3$)

Структура оксидов R_2BO_4 , R=RE, B=Ni и Cu

Никелаты R₂NiO_{4+y}, La, Pr, Nd

Т-структура

Никелаты $R_2 NiO_{4+y}$, La, Pr, Nd

A. Chroneos et al. J. Mater. Chem., 20 (2010) 266; N. Yashima et al. J. American Ceram. Soc., 132 (2010) 2385

Никелаты $R_2 NiO_{4+y}$, La, Pr, Nd

Общая электропроводность:

KTP: 12-14 ppm K⁻¹

НО в кислороде при >850°С : Pr₄Ni₃O₁₀ + Pr₆O₁₁

Плюс взаимодействие с электролитами!

Купраты РЗЭ R₂CuO₄, R=La, Pr, Nd

K. Zheng et al. Mater. Res. Bull. 47 (2012) 4089

Термическое расширение R_2CuO_4

КТР (дилатометрия): Pr_2CuO_4 11.8 ppm K⁻¹ Nd_2CuO_4 12.6 ppm K⁻¹ Sm_2CuO_4 12.6 ppm K⁻¹

HT XRD study:

Аномальное термическое расширение Pr_2CuO_4

КТР (ppm К⁻¹) связей R-O :

Pr₂CuO₄ Nd₂CuO₄ Sm₂CuO₄

- (R-O1) 11.7 15.2 15.1
- (R-O2) 11.9 10.7 11.1

В структуре присутствуют сильные связи между Pr и О1 из плоскости CuO₂ благодаря гибридизации орбиталей 4f Pr и 2p O

Диффузия кислорода в Pr₂CuO₄

D* и k для Pr₂CuO₄

Кристаллические структуры $Pr_{2-x}Sr_xCuO_{4-y}$, x=0.0, 0.4 и 1.0

Диффузия кислорода в $Pr_{1.6}Sr_{0.4}CuO_{3.98}$

