|
Квантовая теория систем многих частиц (осень)
к.ф.-м.н. Я. В. Гиндикин
Аннотация
Курс посвящен приложениям квантовой теории систем многих частиц к свойствам твердых тел. Цель курса — ознакомить студентов с методами вторичного квантования и диаграммной теории возмущений, а также с современными непертурбативными подходами, такими как бозонизация и ренормализационная группа. Эти методы будут применяться к проблемам физики конденсированного состояния: теории электронных жидкостей, сверхпроводимости, и так далее.
Актуальные темы, связанные с текущими исследованиями в области сильно коррелированных электронных систем, включают в себя латтинджерову жидкость, эффект Кондо и квантовые фазовые переходы. Особое внимание будет уделено связи теории систем многих частиц и современных экспериментальных методов, таких как фотоэлектронная спектроскопия с угловым разрешением и сканирующая туннельная спектроскопия.
- Вторичное квантование. Симметрия волновых функций. Канонические преобразования и операторные тождества. Преобразование Иордана-Вигнера. Преобразование Боголюбова-Тябликова.
- Одночастичные квантовые функции Грина. Оператор эволюции в представлении взаимодействия. Адиабатное включение взаимодействия и теорема Гелл-Манна-Лоу. Аналитические свойства и спектральное представление функции Грина. Физический смысл полюсов. Многочастичные функции Грина.
- Теория ферми-жидкости Ландау. Концепция квазичастиц. Параметры Ландау. Перенормировка массы и сжимаемости. Амплитуда рассеяния квазичастиц. Коллективные моды. Нулевой звук. Заряженные ферми-жидкости: теория Ландау-Силина. Неупругое рассеяние квазичастиц. Микроскопическое обоснование феноменологической теории Ландау. Мигдаловский скачок. Теорема Латтинджера.
- Фейнмановские диаграммы при нулевой температуре. Теорема Вика. Диаграммная техника в координатном и импульсном пространстве. Блочное суммирование диаграмм. Уравнение Дайсона. Вершинная часть.
- Функции Грина при конечной температуре. Мацубаровское время. Мацубаровская функция Грина. Дискретные частоты. Правила Фейнмана для мацубаровской диаграммной техники. Метод аналитического продолжения.
- Теория линейного отклика. Соотношения Крамерса-Кронига. Вычисление функций отклика и восприимчивостей. Формула Кубо. Флуктуационно-диссипационная теорема. Спектральные разложения. Спектроскопия: связь корреляционных функций и результатов измерений. Электронная спектроскопия. Туннельная спектроскопия. ARPES, AIPES и обратная PES. Спиновая спектроскопия. Рассеяние нейтронов. ЯМР.
- Взаимодействующий электронный газ. Модель желе. Хартри-Фок. Обмен и корреляции. Теория Геллмана-Бракнера. Вигнеровский кристалл. Двухчастичные функции Грина и приближение случайных фаз. Хаббардовские поправки на локальное поле. Плазмоны. Теория Сингви-Тоси-Ланда-Сьоландера. Правила сумм. Эффективная масса.
- Электрон-фононное взаимодействие. Гамильтониан фононов в представлении вторичного квантования. Гамильтониан Фрёлиха. Мацубаровский подход к описанию электрон-фононного взаимодействия. Электрон-фононное взаимодействие в модели желе. Фононные частоты и коновская аномалия. Поляроны и перенормировка массы.
- Электронный транспорт. Друдевская проводимость: диаграммный вывод. Диффузия электронов. Андерсоновская локализация.
- Нефермижидкостное поведение. Квантовые фазовые переходы и квантовые критические точки. Латтинджерова жидкость и бозонизация. Баллистический транспорт в квантовых проводах.
Основная литература:
- Advanced quantum condensed matter physics, Michael El-Batanouny, Cambridge University Press, 2020.
- Introduction to Many-Body Physics, Piers Coleman, Cambridge University Press, 2015.
Дополнительная литература:
- Many-particle physics, Gerald Mahan, Springer, 1980.
- Quantum Theory of Many-Particle Systems, Alexander Fetter and John Dirk Walecka, Courier Corporation, 2003.
- Фейнмановские диаграммы в проблеме многих тел, Маттук Р., Мир, 1969.
- Condensed Matter Field Theory, Alexander Altland and Ben D. Simons, Cambridge University Press, 2006.
|